Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 42 - 42
2 Jan 2024
Oliveira V
Full Access

Primary bone tumors are rare, complex and highly heterogeneous. Its diagnostic and treatment are a challenge for the multidisciplinary team. Developments on tumor biomarkers, immunohistochemistry, histology, molecular, bioinformatics, and genetics are fundamental for an early diagnosis and identification of prognostic factors. The personalized medicine allows an effective patient tailored treatment. The bone biopsy is essential for diagnosis. Treatment may include systemic therapy and local therapy. Frequently, a limb salvage surgery includes wide resection and reconstruction with endoprosthesis, biological or composites. The risk for local recurrence and distant metastases depends on the primary tumor and treatment response. Cancer patients are living longer and bone metastases are increasing. Bone is the third most frequently location for distant lesions. Bone metastases are associated to pain, pathological fractures, functional impairment, and neurological deficits. It impacts survival and patient quality of life. The treatment of metastatic disease is a challenge due to its complexity and heterogeneity, vascularization, reduced size and limited access. It requires a multidisciplinary treatment and depending on different factors it is palliative or curative-like treatment. For multiple bone metastases it is important to relief pain and increases function in order to provide the best quality of life and expect to prolong survival. Advances in nanotechnology, bioinformatics, and genomics, will increase biomarkers for early detection, prognosis, and targeted treatment effectiveness. We are taking the leap forward in precision medicine and personalized care


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 5 | Pages 760 - 767
1 Jul 2000
Watanabe H Shinozaki T Yanagawa T Aoki J Tokunaga M Inoue T Endo K Mohara S Sano K Takagishi K

We performed positron emission tomography (PET) with . 18. fluorine-fluoro-2-deoxy-D-glucose (FDG) on 55 patients with tumours involving the musculoskeletal system in order to evaluate its role in operative planning. The standardised uptake value (SUV) of FDG was calculated and, to distinguish malignancies from benign lesions, the cases were divided into high (≥ 1.9) and low (< 1.9) SUV groups. The sensitivity of PET for correctly diagnosing malignancy was 100% with a specificity of 76.9% and an overall accuracy of 83.0%. The mean SUV for metastatic lesions was twice that for primary sarcomas (p < 0.0015). Our results suggest that the SUV may be useful in differentiating malignant tumours from benign lesions. However, some of the latter, such as schwannomas, had high SUVs so that biopsy or wide resection was selected as the first operation. Thus, some other quantitative analysis may be required for preoperative planning in cases of high-SUV neurogenic benign tumours. The reverse transcription-polymerase chain reaction revealed that the RNA message of a key enzyme in glucose metabolism, phosphohexose isomerase (PHI)/autocrine motility factor, was augmented in only high FDG-uptake lesions, suggesting that a high expression of the PHI message may be associated with accumulation of FDG in musculoskeletal tumours


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 54 - 54
1 Mar 2012
Sakai T Nakamura N Iwana D Kitada M Nishii T Takao M Yoshikawa H Sugano N
Full Access

Introduction. Femoral neck fracture (FNF) is a common trauma in the elderly individuals. When the blood supply to the femoral head is impaired with a fracture event, the reduction or disruption of blood supply to the bone, hypoxia, leads to death of the bone marrow and trabecular bone, and eventual late segmental collapse. In the reparative process, osteoblasts and osteoclasts perform the important function of repairing the fracture site at the femoral neck. However, the reparative reaction including angiogenesis and osteogenesis remains unknown. In order to investigate the reparative reaction in patients with FNF, the distribution of tartrate resistant acid phosphatase (TRAP)-positive cells and expression of HIF-1 alpha, VEGF, and FGF-2 were observed in 36 hips in 35 patients. Methods. There were 6 men and 30 women who had a mean age of 79 years (range, 58 to 94 years). There were 10 hips with Garden stage 3, and 26 hips with Garden stage 4. The mean duration from onset to the surgery was 12 days (range: 1 to 82 days). Hematoxylin eosin staining, TRAP staining, immunohistochemistry using anti HIF-1 alpha, anti VEGF, and anti FGF-2 antibodies were performed for retrieved whole femoral heads. As a control, one femoral head in a patient who underwent wide resection for metastatic acetabular tumor was used. Results. TRAP-positive cells were detected in 9 hips (25%). They existed around the fracture site in 4 hips, while around the teres insertion and retinaculum in 7 hips. In the control, the TRAP-positive cells were detected slightly around the teres insertion and retinaculum. Around the fracture site, HIF-1 alpha expression was detected in 14 hips (39%) mainly at the vessel epithelium, VEGF was expressed at the edematous area in 28 hips (78%), while FGF-2 was detected widely in the marrow cells in 23 hips (64%). There were significant differences in TRAP staining and in HIF-1 alpha expression between Garden stage 3 and stage 4 hips, although there were no significant differences concerning the preoperative duration after fracture. Conclusion. TRAP-positive cells were recruited through the teres insertion and the retinaculum around the fracture site. HIF-1 alpha expression was detected at the restricted area around the fracture site, while VEGF and FGF-2 were detected widely regardless of Garden classification


Bone & Joint Research
Vol. 5, Issue 10 | Pages 500 - 511
1 Oct 2016
Raina DB Gupta A Petersen MM Hettwer W McNally M Tägil M Zheng M Kumar A Lidgren L

Objectives

We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells.

Materials and Methods

We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 1006 - 1011
1 Jul 2005
Hatano H Ogose A Hotta T Endo N Umezu H Morita T

We examined osteochondral autografts, obtained at a mean of 19.5 months (3 to 48) following extracorporeal irradiation and re-implantation to replace bone defects after removal of tumours. The specimens were obtained from six patients (mean age 13.3 years (10 to 18)) and consisted of articular cartilage (five), subchondral bone (five), external callus (one) and tendon (one). The tumour cells in the grafts were eradicated by a single radiation dose of 60 Gy. In three cartilage specimens, viable chondrocytes were detected. The survival of chondrocytes was confirmed with S-100 protein staining. Three specimens from the subchondral region and a tendon displayed features of regeneration. Callus was seen at the junction between host and irradiated bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1292 - 1297
1 Sep 2005
Lietman SA Inoue N Rafiee B Deitz LW Chao EYS

We used a canine intercalary bone defect model to determine the effects of recombinant human osteogenic protein 1 (rhOP-1) on allograft incorporation. The allograft was treated with an implant made up of rhOP-1 and type I collagen or with type I collagen alone.

Radiographic analysis showed an increased volume of periosteal callus in both test groups compared with the control group at weeks 4, 6, 8 and 10. Mechanical testing after 12 weeks revealed increased maximal torque and stiffness in the rhOP-1 treated groups compared with the control group.

These results indicate a benefit from the use of an rhOP-1 implant in the healing of bone allografts. The effect was independent of the position of the implant. There may be a beneficial clinical application for this treatment.