Advertisement for orthosearch.org.uk
Results 1 - 20 of 53
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 6 | Pages 966 - 970
1 Nov 1990
Maloney W Jasty M Rosenberg A Harris W

We have reviewed 25 cases of focal femoral osteolysis in radiographically stable, cemented femoral implants. In three hips retrieved at post-mortem from two patients, we have been able to make a detailed biomechanical and histological analysis. The interval between arthroplasty and the appearance of focal osteolysis on clinical radiographs ranged from 40 to 168 months, and in over 70% of the cases this did not appear until after five or more years. Few had significant pain and there was no relation to age, sex or original diagnosis. The most common site for osteolysis were Gruen zones 2 and 3 on the anteroposterior radiograph and zones 5 and 6 on the lateral radiograph. In 15 cases (60%), the area of osteolysis corresponded to either a defect in the cement mantle or an area of very thin cement. The rate of progression of these lesions was variable, but to date only one has progressed to gross loosening of the femoral component. The back-scatter scanning electron microscopic examination of serial sections and biomechanical testing of the post-mortem specimens demonstrated focal cement fracture around implants that were otherwise rigidly fixed. In eight cases from which tissue was available, histology showed a histiocytic reaction with evidence of particulate polymethylmethacrylate. We consider that this local fragmentation was the stimulus for local osteolysis in an otherwise stable cemented femoral component.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 3 | Pages 322 - 327
1 Mar 2012
Morley JR Blake SM Hubble MJW Timperley AJ Gie GA Howell JR

The removal of all prosthetic material and a two-stage revision procedure is the established standard management of an infected total hip replacement (THR). However, the removal of well-fixed femoral cement is time-consuming and can result in significant loss of bone stock and femoral shaft perforation or fracture. We report our results of two-stage revision THR for treating infection, with retention of the original well-fixed femoral cement mantle in 15 patients, who were treated between 1989 and 2002. Following partial excision arthroplasty, patients received local and systemic antibiotics and underwent reconstruction and re-implantation at a second-stage procedure, when the infection had resolved. The mean follow-up of these 15 patients was 82 months (60 to 192). Two patients had positive microbiology at the second stage and were treated with six weeks of appropriate antibiotics; one of these developed recurrent infection requiring further revision. Successful eradication of infection was achieved in the remaining 14 patients. We conclude that when two-stage revision is used for the treatment of peri-prosthetic infection involving a THR, a well-fixed femoral cement mantle can be safely left in situ, without compromising the treatment of infection. Advantages of this technique include a shorter operating time, reduced loss of bone stock and a technically more straightforward second-stage procedure


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 31 - 31
1 Jun 2017
Swanton E Hubble M
Full Access

Although cement in cement acetabular revision is a recognised option in the presence of a well-fixed cement mantle, partial cement mantle retention is not normally recommended or practiced. However, when revising a cemented acetabular cup it is not infrequent to be faced with loose superolateral cement but well-fixed medial cement. Removal of the well-fixed cement can be time consuming and destructive. An alternative would be to retain this cement and incorporate it into the reconstruction. This study assesses the practice and results of partial cement mantle retention (PCR) at acetabular revision. We retrospectively identified a cohort of 28 hips in 26 patients using the PCR technique from 1. st. January 2000 to 1. st. January 2013. This represented 3.3% of cup revisions where a cemented cup was used. The area of cement loss was reconstructed in one of three ways: re-cementing into drill holes (6 cases); impaction grafting of the defect (8 cases); or use of a trabecular metal wedge (14 cases). 24 hips had a minimum 2-year follow up (mean 6 years). There were no subsequent revisions for aseptic loosening. One acetabulum was later revised for dislocation and X-rays were lost in one patient leaving 22 patients with x-ray available and retained implants. Two of these cases showed progression of lucent lines, which were not clinically significant. Retaining well-fixed medial cement during socket revision appears to be a reasonable reconstruction option in carefully selected cases


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 125 - 125
1 Apr 2017
Kraay M
Full Access

The well-fixed cemented femoral stem and surrounding cement can be challenging to remove. Success requires evaluation of the quality of the cement mantle (interface lucency), position of the stem, extent of cement below the tip of the stem and skill with the specialised instruments and techniques needed to remove the stem and cement without perforating the femur. Smooth surfaced stems can usually be easily removed from the surrounding cement mantle with a variety of stem extractors that attach to the trunnion or an extraction hole on the implant. Roughened stems can be freed from the surrounding cement mantle with osteotomes or a narrow high speed burr and then extracted with the above instruments. Following this, the well-fixed cement mantle needs to be removed. Adequate exposure and visualization of the cement column is essential to remove the well-fixed cement without damage to the bone in the femur. This is important since fixation of a revision femoral component typically requires at least 4 cm of contact with supportive cortical bone, which can be difficult to obtain if the femur is perforated or if the isthmus damaged. Proximally, cement in the metaphyseal region can be thinned with a high speed burr, then split radially and removed piecemeal. It is essential to remember that both osteotomes and high speed burrs will cut thru bone easier than cement and use of these instruments poses a substantial risk of unintended bone removal and perforation of the femur if done improperly. These instruments should, as a result, be used under direct vision. Removal of more distal cement in the femur typically requires use of an extended femoral osteotomy (ETO) to allow for adequate access to the well-fixed cement in the bowed femoral canal. An ETO also facilitates more efficient removal of cement in the proximal femur. The ETO should be carefully planned so that it is distal enough to allow for access to the end of the cement column and still allow for stable fixation of a new implant. Too short of an ETO increases the risk of femoral perforation since the straight cement removal instruments cannot negotiate the bowed femoral canal to access the end of the cement column without risk of perforation. An ETO that is too distal makes cement removal easier, but may not allow for sufficient fixation of a new revision femoral stem. Cement below the level of the ETO cannot be directly visualised and specialised instruments are necessary to safely remove this distal cement. Radiofrequency cement removal devices use high frequency (ultrasonic) radio waves to melt the cement within the canal. Although cement removal with these devices is time consuming and tedious, they do substantially reduce the chances of femoral perforation. These devices can, however, generate considerable heat locally and can result in thermal injury to the bone and surrounding tissues. Once the distal end of the cement mantle is penetrated, backbiting or hooked curettes can be use to remove any remaining cement from within the canal. It is important that all cement be removed from the femur since reamers used for preparation of the distal canal will be deflected by any retained cement, which could result in eccentric reaming and inadvertent perforation of the femur and make fixation of a new implant very challenging. An intra-operative x-ray can be very helpful to insure that all cement has been removed before reaming is initiated. One should always plan for a possible femoral perforation and have cortical strut grafts and a stem available that will safely bypass the end of the cement column and the previous cement restrictor


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 73 - 73
1 Oct 2019
Fehring KA Wyles CC Trousdale RT
Full Access

Introduction. In the setting of periprosthetic joint infection, the complete removal of implants and cement can be challenging with well-fixed, cemented implants about the knee. This can get especially complex in the setting of long cemented femoral stems. Osteotomies are well described in the proximal femur and tibia for removal of implants and cement. There is little information available on distal femoral osteotomies to facilitate knee implant and retained cement removal. Methods. We describe a novel anterolateral oblique distal femoral osteotomy for the removal of well-fixed, cemented components during resection knee arthroplasty that preserves vascularity to the osteotomized segment. Cadaveric anatomic vascular injection studies were performed to document vascularity of the osteotomized segment. Clinical examples, and results will be presented. Results. Anatomic vascular studies documented preserved vascularity to the osteotomized segment. In two patients intramedullary infected implant and cement was completely removed. At reimplantation and final followup the osteotomy was radiographically healed, implants well fixed, and no recurrent infections were noted. Conclusions. This osteotomy appears to be useful when removing well fixed, cemented femoral components during periprosthetic infection. Vascularity and union was preserved and obtained in all patients. For figures, tables, or references, please contact authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 104 - 104
1 Aug 2017
Paprosky W
Full Access

The extended proximal femoral osteotomy has been used primarily in conjunction with cementless fixation, but has been described for use with cemented stems as well. The extended proximal femoral osteotomy is indicated for the removal of well-fixed cemented and cementless implants, as well as removal of cement in patients with a loose femoral component in a well-fixed cement mantle. Although the osteotomy is not required for many femoral revisions, it is an absolute indication in patients with femoral component loosening and subsequent varus remodeling of the proximal femur. The osteotomy diminishes the risk of an inadvertent fracture of the often compromised greater trochanter especially upon removal of a failed femoral component from its subsided or migrated position. The osteotomy enhances the exposure of the acetabulum which may be difficult in the revision setting due to multiple surgeries, severe migration of the acetabular component or the heterotopic ossification. The extended proximal femoral osteotomy can also be used in the primary setting when a proximal femoral deformity interferes with straight reaming of the femoral canal, such as in patients with various dysplasias, previous corrective osteotomies or malunions


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 112 - 112
1 Nov 2016
Paprosky W
Full Access

The extended proximal femoral osteotomy has been used primarily in conjunction with cementless fixation, but has been described for use with cemented stems as well. The extended proximal femoral osteotomy is indicated for the removal of well-fixed cemented and cementless implants, as well as removal of cement in patients with a loose femoral component in a well-fixed cement mantle. Although the osteotomy is not required for many femoral revisions, it is an absolute indication in patients with femoral component loosening and subsequent varus remodeling of the proximal femur. The osteotomy diminishes the risk of an inadvertent fracture of the often compromised greater trochanter especially upon removal of a failed femoral component from its subsided or migrated position. The osteotomy enhances the exposure of the acetabulum which may be difficult in the revision setting due to multiple surgeries, severe migration of the acetabular component or heterotopic ossification. The extended proximal femoral osteotomy can also be used in the primary setting when a proximal femoral deformity interferes with straight reaming of the femoral canal, such as in patients with various dysplasias, previous corrective osteotomies or malunions


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 52 - 52
1 Feb 2015
Kraay M
Full Access

The well-fixed cemented femoral stem and surrounding cement can be challenging to remove. Success requires evaluation of the quality of the cement mantle (interface lucency), position of the stem, extent of cement below the tip of the stem and skill with the specialised instruments and techniques needed to remove the stem and cement without perforating the femur. Smooth surfaced stems can usually be easily removed from the surrounding cement mantle with a variety of stem extractors that attach to the trunnion or an extraction hole on the implant. Roughened stems can be freed from the surrounding cement mantle with osteotomes or a narrow high speed burr and then extracted with the above instruments. Following this, the well fixed cement mantle needs to be removed. Adequate exposure and visualization of the cement column is essential to remove the well-fixed cement without damage to the bone in the femur. This is important since fixation of a revision femoral component typically requires at least 4cm of contact with supportive cortical bone, which can be difficult to obtain if the femur is perforated or if the isthmus damaged. Proximally, cement in the metaphyseal region can be thinned with a high speed burr, then split radially and removed piecemeal. It is essential to remember that both osteotomes and high speed burrs will cut thru bone easier than cement and use of these instruments poses a substantial risk of unintended bone removal and perforation of the femur if done improperly. These instruments should, as a result, be used under direct vision. Removal of more distal cement in the femur typically requires use of an extended femoral osteotomy (ETO) to allow for adequate access to the well-fixed cement in the bowed femoral canal. An ETO also facilitates more efficient removal of cement in the proximal femur. The ETO should be carefully planned so that it is distal enough to allow for access to the end of the cement column and still allow for stable fixation of a new implant. Too short of an ETO increases the risk of femoral perforation since the straight cement removal instruments cannot negotiate the bowed femoral canal to access the end of the cement column without risk of perforation. An ETO that is too distal makes cement removal easier, but may not allow for sufficient fixation of a new revision femoral stem. Cement below the level of the ETO cannot be directly visualised and specialised instruments are necessary to safely remove this distal cement. Radiofrequency cement removal devices (OSCAR) use high frequency (ultrasonic) radio waves to melt the cement within the canal. Although cement removal with these devices is time consuming and tedious, they do substantially reduce the chances of femoral perforation. These devices can, however, generate considerable heat locally and can result in thermal injury to the bone and surrounding tissues. Once the distal end of the cement mantle is penetrated, backbiting or hooked curettes can be used to remove any remaining cement from within the canal. It is important that all cement be removed from the femur since reamers used for preparation of the distal canal will be deflected by any retained cement, which could result in eccentric reaming and inadvertent perforation of the femur and make fixation of a new implant very challenging. An intraoperative x-ray can be very helpful to insure that all cement has been removed before reaming is initiated


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 212 - 220
1 Feb 2022
Fishley WG Selvaratnam V Whitehouse SL Kassam AM Petheram TG

Aims. Femoral cement-in-cement revision is a well described technique to reduce morbidity and complications in hip revision surgery. Traditional techniques for septic revision of hip arthroplasty necessitate removal of all bone cement from the femur. In our two centres, we have been using a cement-in-cement technique, leaving the distal femoral bone cement in selected patients for septic hip revision surgery, both for single and the first of two-stage revision procedures. A prerequisite for adoption of this technique is that the surgeon considers the cement mantle to be intimately fixed to bone without an intervening membrane between cement and host bone. We aim to report our experience for this technique. Methods. We have analyzed patients undergoing this cement-in-cement technique for femoral revision in infection, and present a consecutive series of 89 patients. Follow-up was undertaken at a mean of 56.5 months (24.0 to 134.7) for the surviving cases. Results. Seven patients (7.9%) required further revision for infection. Ten patients died of causes unrelated to their infection before their two-year review (mean 5.9 months; 0.9 to 18.6). One patient was lost to follow-up at five months after surgery, and two patients died of causes unrelated to their hip shortly after their two-year review was due without attending. Of the remaining patients, 69 remained infection-free at final review. Radiological review confirms the mechanical success of the procedure as previously described in aseptic revision, and postoperative Oxford Hip Scores suggest satisfactory functional outcomes. Conclusion. In conclusion, we found that retaining a well-fixed femoral cement mantle in the presence of infection and undertaking a cement-in-cement revision was successful in 82 of the patients (92.1%) in our series of 89, both in terms of eradication of infection and component fixation. These results are comparable to other more invasive techniques and offer significant potential benefits to the patient. Cite this article: Bone Joint J 2022;104-B(2):212–220


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_10 | Pages 29 - 29
1 Aug 2021
Fishley W Selvaratnam V Carluke I Partington P Reed M Kramer D Wilson M Hubble M Howell J Timperley A Whitehouse S Kassam A Petheram T
Full Access

Femoral cement-in-cement revision is a well described technique to reduce morbidity and complications in hip revision surgery. Traditional techniques for septic revision necessitate removal of all bone cement from the femur. In our two institutions, we have been using a cement-in-cement technique, leaving the distal femoral cement in selected cases for septic hip revision surgery. Between February 2010 and September 2019, 89 patients with prosthetic hip infection underwent first or single stage procedures leaving the distal femoral cement in situ and performing a cement-in-cement revision. The mean patient age was 72.0 years (24–92). The median time from the last arthroplasty procedure was 29.0 months (1–294). 81 patients underwent revision using a cemented Exeter stem, 7 patients received an articulating spacer, and one patient underwent excision arthroplasty with the distal cement left in situ. Patients received clinical and radiographic follow-up with a mean of 42.8 months (range 11.0–120.1 months). Oxford hip scores were collected from each institution's existing databases. 9 patients (10.1%) died within one year of surgery. No deaths were directly related to joint infection or the surgery. One patient was lost to follow up before one year. Of the remainder, 7 patients (8.9%) required further procedures for infection and were therefore considered to be treatment failures. 6 patients (7.6%) underwent planned second stage procedures with no recurrence of infection. 7 patients (8.9%) had further surgery for non-infective reasons. The Kaplan-Meier estimate of infection free survival at one year was 93.7% (95% CI 88.4 to 99.0%). No patients underwent revision for stem loosening. Oxford hip scores were available at over one year postoperatively for 51 patients with a mean score of 30.6, and a mean gain of 11.9. In our combined cohort of patients, cement-in-cement revision had an infection eradication rate of 91.1%. Patient selection is crucial, and the procedure can only be performed when there is a well-fixed cement mantle. However, when strict criteria are followed, this technique offers potential significant benefits to surgeons performing this challenging surgery, and more importantly the patients undergoing them


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1623 - 1627
1 Dec 2015
Mounsey EJ Williams DH Howell JR Hubble MJ

Revision of a cemented hemiarthroplasty of the hip may be a hazardous procedure with high rates of intra-operative complications. Removing well-fixed cement is time consuming and risks damaging already weak bone or perforating the femoral shaft. The cement-in-cement method avoids removal of intact cement and has shown good results when used for revision total hip arthroplasty (THA). The use of this technique for the revision of a hemiarthroplasty to THA has not been previously reported. A total of 28 consecutive hemiarthroplasties (in 28 patients) were revised to a THA using an Exeter stem and the cement-in-cement technique. There were four men and 24 women; their mean age was 80 years (35 to 93). Clinical and radiographic data, as well as operative notes, were collected prospectively and no patient was lost to follow-up. Four patients died within two years of surgery. The mean follow up of the remainder was 70 months (25 to 124). Intra-operatively there was one proximal perforation, one crack of the femoral calcar and one acetabular fracture. No femoral components have required subsequent revision for aseptic loosening or are radiologically loose. . Four patients with late complications (14%) have since undergone surgery (two for a peri-prosthetic fracture, and one each for deep infection and recurrent dislocation) resulting in an overall major rate of complication of 35.7%. The cement-in-cement technique provides reliable femoral fixation in this elderly population and may reduce operating time and rates of complication. Cite this article: Bone Joint J 2015;97-B:1623–7


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 119 - 119
1 May 2019
Gehrke T
Full Access

Revision total hip arthroplasty (THA) is a challenging procedure and the removal of well-fixed femoral stems can be compounded by several pitfalls. In such cases, several removal techniques have been presented in the literature. The most commonly used techniques are the transfemoral osteotomy presented by Wagner and the extended trochanteric osteotomy (ETO) described by Younger et al. Both techniques allow the surgeon to have better intraoperative exposure of the fixation surfaces of the solid femoral stems. However, the complication rates such as non-union should not be underestimated. Therefore, it is always a good decision to avoid an ETO if alternative techniques exist. The endofemoral surgical technique is an alternative method for the removal of well-fixed cemented and cementless femoral stems. Tips and tricks of the endofemoral technique for the removal of well-fixed femoral stems are presented


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 40 - 40
1 Jan 2011
Brogan K Charity J Sheeraz A Hubble M Howell J
Full Access

There is evidence that recommends the retention of a well-fixed cement mantle at the time of revision hip arthroplasty. The cement-cement interface has been proven to have greater shear strength than a new bone-cement interface after removing a well-fixed cement mantle. This study reviewed a series of acetabular revision procedures with a minimum 2-year follow-up where the original cement mantle was left intact. From 1988 to 2004, 60 consecutive cement-in-cement revisions of the acetabular component were performed at our institution. Outcome was based on functional assessment using the Oxford, Charnley, and Harris scoring systems as well as radiographic analysis using the DeLee and Charnley criteria. In total 60 procedures were performed in 60 patients (40 female and 20 male), whose mean age at surgery was 75 years (range 40 to 99 years). 80% were performed for recurrent dislocation, 13.3% during femoral component revision, 5% for acetabular component wear, and 1.7% for pain. No case was lost to follow-up. There was one re-revision for aseptic cup loosening at 7 years, with 1 further case of radiological loosening identified at the latest review. There were 6 further cases of dislocation 4 of which were treated with further in-cement revisions. All other cases showed well-fixed components on radiographic analysis and no evidence of failure at the most recent follow up. The cement-in-cement technique already has a good body of evidence based on revision of the femoral component and this study shows that the technique can be applied to acetabular revisions as well with good functional and radiological results in the short to medium term


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 88 - 88
1 May 2012
Hubble M Blake S Howell J Crawford R Timperley J Gie G
Full Access

Removal of well-fixed cement at the time of revision THA for sepsis is time consuming and risks bone stock loss, femoral perforation or fracture. We report our experience of two-stage revision for infection in a series of cases in which we have retained well-fixed femoral cement. All patients underwent two-stage revision for infection. At the first stage the prostheses and acetabular cement were removed but when the femoral cement mantle demonstrated good osseo-integration it was left in-situ. Following Girdlestone excision arthroplasty (GEA), patients received local antibiotics delivered by cement spacers, as well as systemic antibiotics. At the second stage the existing cement mantle was reamed, washed and dried and then a femoral component was cemented into the old mantle. Sixteen patients (M:F 5:11) had at least three years follow-up (mean 80 months – range 43 to 91). One patient died of an unrelated cause at 53 months. Recurrence of infection was not suspected in this case. The mean time to first stage revision was 57 months (3 to 155). The mean time between first and second stages was nine months (1 to 35). Organisms were identified in 14 (87.5%) cases (5 Staphylococcus Aureas, 4 Group B Streptococcus, 2 Coagulase negative Staphylococcus, 2 Enterococcus Faecalis, 1 Escheria Coli). At second stage, five (31.2%) acetabulae were uncemented and 11 (68.8%) were cemented. There were two complications; one patient dislocated 41 days post-operatively and a second patient required an acetabular revision at 44 days for failure of fixation. No evidence of infection was found at re-revision. One patient (1/16, 7%) has been re-revised for recurrent infection. Currently no other patients are suspected of having a recurrence of infection (93%). Retention of a well-fixed femoral cement mantle during two-stage revision for infection and subsequent cement-in-cement reconstruction appears safe with a success rate of 93%. Advantages include a shorter operating time, reduced loss of bone stock, improved component fixation and a technically easier second stage procedure


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 105 - 105
1 Aug 2017
Gehrke T
Full Access

Revision total hip arthroplasty (THA) is a challenging procedure, especially in cases with well-fixed implants. In such cases, several removal techniques have been presented in the current literature, while the most commonly used techniques are the transfemoral osteotomy or the extended trochanteric osteotomy (ETO). Those techniques allow the surgeon to have a better intra-operative exposure of the fixation surfaces of the solid femoral stems. However, the complication rates such as non-union are not unremarkable. Therefore, it is always a good decision to avoid an ETO if alternative techniques exist. The endofemoral surgical technique is an alternative method for the removal of well-fixed cemented and uncemented femoral stems


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 51 - 51
1 Jun 2018
Kraay M
Full Access

The well-fixed femoral stem can be challenging to remove. Removal of an extensively osteointegrated cementless stem requires disruption of the entire implant-bone interface while a well-fixed cemented stem requires complete removal of all adherent cement from the underlying cortical bone in both the metaphysis and diaphysis of the femur. In these situations, access to those areas of the femur distal to the metaphyseal flare that are beyond the reach of osteotomes and high speed burrs is necessary. This typically requires use of an extended femoral osteotomy (ETO). The ETO should be carefully planned so that it extends distal enough to allow for access to the end of the stem or cement column and still allow for stable fixation of a new implant. Too short of an ETO increases the risk of femoral perforation by straight burrs, trephines or cement removal instruments that cannot negotiate the bowed femoral canal to access the end of the cement column or end of the stem without risk of perforation. The ETO should also be long enough to allow for fixation with at least 2 cerclage cables. An ETO that is too distal makes implant and cement removal easier, but may not allow for sufficient fixation of a new revision femoral stem. After insertion of the revision stem, the osteotomy is reduced back around the stem and secured in place with cerclage cables


The Bone & Joint Journal
Vol. 100-B, Issue 2 | Pages 170 - 175
1 Feb 2018
Lam Tin Cheung K Lanting BA McCalden RW Yuan X MacDonald SJ Naudie DD Teeter MG

Aims. The aim of this study was to evaluate the long-term inducible displacement of cemented tibial components ten years after total knee arthroplasty (TKA). Patients and Methods. A total of 15 patients from a previously reported prospective trial of fixation using radiostereometric analysis (RSA) were examined at a mean of 11 years (10 to 11) postoperatively. Longitudinal supine RSA examinations were acquired at one week, one year, and two years postoperatively and at final follow-up. Weight-bearing RSA examinations were also undertaken with the operated lower limb in neutral and in maximum internal rotation positions. Maximum total point motion (MTPM) was calculated for the longitudinal and inducible displacement examinations (supine versus standing, standing versus internal rotation, and supine versus standing with internal rotation). Results. All patients showed some inducible displacement. Two patients with radiolucent lines had greater mean standing-supine MTPM displacement (1.35; . sd. 0.38) compared with the remaining patients (0.68; . sd. 0.36). These two patients also had a greater mean longitudinal MTPM at ten years (0.64; . sd. 0.50) compared with the remaining patients (0.39; . sd. 0.13 mm). Conclusion. Small inducible displacements in well-fixed cemented tibial components were seen ten years postoperatively, of a similar magnitude to that which has been reported for well-fixed components one to two years postoperatively. Greater displacements were found in components with radiolucent lines. Cite this article: Bone Joint J 2018;100-B:170–5


The Bone & Joint Journal
Vol. 99-B, Issue 4_Supple_B | Pages 27 - 32
1 Apr 2017
Cnudde PHJ Kärrholm J Rolfson O Timperley AJ Mohaddes M

Aims. Compared with primary total hip arthroplasty (THA), revision surgery can be challenging. The cement-in-cement femoral revision technique involves removing a femoral component from a well-fixed femoral cement mantle and cementing a new stem into the original mantle. This technique is widely used and when carried out for the correct indications, is fast, relatively inexpensive and carries a reduced short-term risk for the patient compared with the alternative of removing well-fixed cement. We report the outcomes of this procedure when two commonly used femoral stems are used. Patients and Methods. We identified 1179 cement-in-cement stem revisions involving an Exeter or a Lubinus stem reported to the Swedish Hip Arthroplasty Register (SHAR) between January 1999 and December 2015. Kaplan-Meier survival analysis was performed. Results. Survivorship is reported up to six years and was better in the Exeter group (91% standard deviation (. sd). 2.8% versus 85% . sd. 5.0%) (p = 0.02). There was, however, no significant difference in the survival of the stem and risk of re-revision for any reason (p = 0.58) and for aseptic loosening (p = 0.97), between revisions in which the Exeter stem (94% . sd. 2.2%; 98% . sd. 1.6%) was used compared with those in which the Lubinus stem (95% . sd. 3.2%; 98% . sd.  2.2%) was used. The database did not allow identification of whether a further revision was indicated for loosening of the acetabular or femoral component or both. Conclusion. The cement-in-cement technique for revision of the femoral component gave promising results using both designs of stem, six years post-operatively. Cite this article: Bone Joint J 2017;99-B(4 Supple B):27–32


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 92 - 92
1 Dec 2015
Jensen C Hettwer W Horstmann P Petersen M
Full Access

To report our experience with the use of local antibiotic co-delivery with a synthetic bone graft substitute during a second stage re-implantation of an infected proximal humeral replacement. A 72 year old man was admitted to our department with a pathological fracture through an osteolytic lesion in the left proximal humerus, due to IgG Myelomatosis. He was initially treated with a cemented proximal humerus replacement hemiarthroplasty. Peri-prosthetic joint infection (PJI) with significant joint distention was evident three weeks post operatively. Revision surgery confirmed presence of a large collection of pus and revealed disruption of the soft tissue reattachment tube, as well as complete retraction of rotator cuff and residual capsule. All modular components were removed and an antibiotic-laden cement spacer (1.8g of Clindamycin and Gentamycin, respectively) was implanted onto the well-fixed cemented humeral stem. Initial treatment with i.v. Amoxicillin/Clavulanic acid was changed to Rifampicin and Fusidic Acid during a further 8 weeks after cultures revealed growth of S. epidermidis. During second stage revision, a hybrid inverse prosthesis with silver coating was implanted, with a total of 20 ml Cerament ™G (injected into the glenoid cavity prior to insertion of the base plate and around the humeral implant-bone interface) and again stabilized with a Trevira tube. Unfortunately, this prosthesis remained unstable, ultimately requiring re-revision to a completely new constrained reverse prosthesis with a custom glenoid shell and silver-coated proximal humeral component. 18 months postoperatively, the patient's shoulder remains pain free and stable, without signs of persistent or reinfection since the initial second stage revision. The function however, unfortunately remains poor. This case report illustrates the application of an antibiotic-eluting bone graft substitute in a specific clinical situation, where co-delivery of an antibiotic together with a bone remodeling agent may be beneficial to simultaneously address PJI as well as poor residual bone quality


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 593 - 601
1 Jun 2023
Scott CEH Yapp LZ Howard T Patton JT Moran M

Periprosthetic femoral fractures are increasing in incidence, and typically occur in frail elderly patients. They are similar to pathological fractures in many ways. The aims of treatment are the same, including 'getting it right first time' with a single operation, which allows immediate unrestricted weightbearing, with a low risk of complications, and one that avoids the creation of stress risers locally that may predispose to further peri-implant fracture. The surgical approach to these fractures, the associated soft-tissue handling, and exposure of the fracture are key elements in minimizing the high rate of complications. This annotation describes the approaches to the femur that can be used to facilitate the surgical management of peri- and interprosthetic fractures of the femur at all levels using either modern methods of fixation or revision arthroplasty.

Cite this article: Bone Joint J 2023;105-B(6):593–601.