Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 40 - 40
1 May 2012
Eardley W Clasper J Midwinter M Watts S
Full Access

Crown copyright 2009. Published with the (permission of the Defence Science and Technology Laboratory on behalf of the Controller of HMSO. Introduction. The optimum strategy for the care of war wounds is yet to be established. A need exists to model complex extremity injury, allowing investigation of wound management options. Aim. To develop a model of militarily relevant extremity wounding. Study Design. Laboratory study with New Zealand White Rabbits. Methods. Phase 1. Development of injury. Following induction of general anaesthesia, a muscle belly on the flexor aspect of the forelimb of the rabbit was exposed. This was achieved by creating a fascial tunnel under the belly of flexor carpi ulnaris (FCU). Utilising a custom built drop test rig a high energy, short duration impact was delivered. To replicate casualty evacuation timelines, the animal was maintained under anaesthesia for three hours and recovered. The wound was dressed with saline soaked gauze and supportive bandaging. 48 hrs later, the animal was culled and the muscle harvested for histological analysis. Analgesia was administered once a day. Animals were checked by experienced staff at least twice a day and body temperature recorded by a subcutaneous transponder. Phase 2. Contamination of muscle injury. Sequential animals had inoculums of 1×102/100μl, 1×106/100μl and 1×108/100μl of Staphylococcus aureus administered to the muscle immediately after injury. Animals were recovered from anaesthetic and monitored as per phase 1. Delivery was evaluated by droplet spread and via injection by fine bore needle into the muscle belly. At the 48 hour point, the animals were culled, dressings removed, the muscle harvested and auxiliary lymph nodes sampled. Quantitative microbiological analysis was performed to determine colony forming unit counts (CFU) at 24 hours post-collection. Results. Phase 1. Six animals were exposed to a loading of 0.5kg. Histological analysis demonstrated a consistent injury pattern with 20% of the muscle belly becoming necrotic. Following discussion with subject matter experts this was found to be representative of the nature of injury from ballistic limb trauma and was adopted as standard. Phase 2. Twenty-two animals were exposed to the standardised injury and then inoculated at the prescribed challenge doses and delivery methods. A challenge dose of 1×106/100μl S. aureus delivered by droplet provided the greatest consistency. A group of six animals with an average challenge dose of 3.3×106/100μl yielded growth at 48hrs on average of 9.2×106 CFU. There were no adverse effects on animal welfare throughout, with body temperatures within normal limits at all times. Discussion. The use of rabbits in the investigation of musculoskeletal injury and infection is well established. No study to date however has addressed high energy complex soft tissue wounding, contamination and its optimum management. Considering the current burden of such wounds the need for this question to be answered in a research setting is transparent. This model enables a significant, reproducible, contaminated soft tissue injury to be delivered in vivo. It will allow the investigation of complex wound management options including wound coverage and fracture fixation