Abstract. Objectives. To evaluate the safety and efficacy of
Abstract. Objectives. The principle of osteoporotic vertebral compression fracture (OVCF) is fixing instability, providing anterior support, and decompression. Contraindication for
Introduction. Vertebral osteoporotic fracture increases both elastic and time-dependent ('creep') deformations of the fractured vertebral body during subsequent loading. The accelerated rate of creep deformation is especially marked in central and anterior regions of the vertebral body where bone mineral density is lowest. In life, subsequent loading of damaged vertebrae may cause anterior wedging of the vertebral body which could contribute to the development of kyphotic deformity. The aim of this study was to determine whether gradual creep deformations of damaged vertebrae can be reduced by
Background. Fracture of an osteoporotic vertebral body reduces vertebral stiffness and decompresses the nucleus in the adjacent intervertebral disc. This leads to high compressive stresses acting on the annulus and neural arch. Altered load-sharing at the fractured level may influence loading of neighbouring vertebrae, increasing the risk of a fracture ‘cascade’.
Summary. Time-lapsed CT offers new opportunities to predict the risk of cement leakage and to evaluate the mechanical effects on a vertebral body by monitoring each incremental injection step in an in-vitro
Introduction.
Summary Statement. There are no standardised methods for assessing the cement flow behaviour in
Introduction. Osteoporotic vertebral fractures can cause severe vertebral wedging and kyphotic deformity. This study tested the hypothesis that kyphoplasty restores vertebral height, shape and mechanical function to a greater extent than
Background. Percutaneous
Prophylactic augmentation is meant to reinforce the vertebral body (VB), but in some cases it is suspected to actually weaken it. To elucidate the biomechanical efficacy of prophylactic augmentation, the full-field three-dimensional strain distributions were measured for the first time inside prophylactic-augmented vertebrae. Twelve thoracic porcine vertebrae were assigned to three groups: 4 were augmented with bone cement for
Summary Statement. Prophylactic
Introduction. Polymethylmethacrylate(PMMA) bone cement has been used in joint reconstruction surgery and recently introduced for treatment of osteoporotic vertebral compression fracture. However, the use of PMMA bone cement in
Balloon kyphoplasty (BKP) is a minimally invasive surgical technique used to correct kyphosis and vertebral compression fractures. BKP uses cement to fill a void created by the inflation of a balloon in a vertebra, it can be used as an alternative to
INTRODUCTION. Over 85% of patients with multiple myeloma (MM) have bone disease, mostly affecting thoraco-lumbar vertebrae. Vertebral fractures can lead to pain and large spinal deformities requiring application of
We performed a biomechanical study to compare the augmentation of isolated fractured vertebral bodies using two different bone tamps. Compression fractures were created in 21 vertebral bodies harvested from red deer after determining their initial strength and stiffness, which was then assessed after standardised bipedicular vertebral augmentation using a balloon or an expandable polymer bone tamp. The median strength and stiffness of the balloon bone tamp group was 6.71 kN (
Several experimental models have been used to produce intravascular fat embolism. We have developed a simple technique to induce fat embolism using corn oil emulsified with distilled water to form fatty micelles. Fat embolism was produced by intravenous administration of these fatty micelles in anaesthetised rats, causing alveolar oedema, haemorrhage and increased lung weight. Histopathological examination revealed fatty droplets and fibrin thrombi in the lung, kidney and brain. The arteriolar lumen was filled with fatty deposits. Following fat embolism, hypoxia and hypercapnia occurred. The plasma phospholipase A2, nitrate/nitrite, methylguidanidine and proinflammatory cytokines were significantly increased. Mass spectrometry showed that the main ingredient of corn oil was oleic acid. This simple technique may be applied as a new animal model for the investigation of the mechanisms involved in the fat embolism syndrome.