INTRODUCTION. Stimulation of angiogenesis via the delivery of growth factors (GFs) like vascular endothelial growth factor (VEGF) is a promising strategy for the treatment of avascular necrosis (AVN). Tyraminated poly-vinyl-alcohol hydrogels (PVA-Tyr), which have the ability to covalently incorporate GFs, were proposed as a platform for the controlled delivery of therapeutic levels VEGF to the necrotic areas[1]. Nevertheless, PVA hydrophilicity and bioinertness limits its integration with the host tissues. The aim of this study was to investigated the effectiveness of incorporating gelatin, an FDA-approved, non-immunogeneic biomaterial with biological recognition sites, as a strategy to facilitate blood vessels invasion of PVA-Tyr hydrogels and to restore the vascular supply to necrotic tissues. METHODS. Progressively higher gelatin concentrations (0.01–5wt%) were incorporated in the PVA-Tyr network. Hydrogel physico-chemical properties and endothelial cell attachment were evaluated. Afterwards, the capability of the released VEGF and gelatin to promote vascularization was evaluated via chorioallantoic membrane (CAM) assay. VEGF-loaded PVA-Tyr hydrogels with or without gelatin (n=7) were implanted in a subcutaneous mouse model for 3 weeks.