Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 52 - 52
17 Nov 2023
Jones R Bowd J Gilbert S Wilson C Whatling G Jonkers I Holt C Mason D
Full Access

Abstract

OBJECTIVE

Knee varus malalignment increases medial knee compartment loading and is associated with knee osteoarthritis (OA) progression and severity1. Altered biomechanical loading and dysregulation of joint tissue biology drive OA progression, but mechanistic links between these factors are lacking. Subchondral bone structural changes are biomechanically driven, involve bone resorption, immune cell influx, angiogenesis, and sensory nerve invasion, and contribute to joint destruction and pain2. We have investigated mechanisms underlying this involving RANKL and alkaline phosphatase (ALP), which reflect bone resorption and mineralisation respectively3 and the axonal guidance factor Sema3A. Sema3A is osteotropic, expressed by mechanically sensitive osteocytes, and an inhibitor of sensory nerve, blood vessel and immune cell invasion4. Sema3A is also differentially expressed in human OA bone5.HYPOTHESIS: Medial knee compartment overloading in varus knee malalignment patients causes dysregulation of bone derived Sema3A signalling directly linking joint biomechanics to pathology and pain.

METHODS

Synovial fluid obtained from 30 subjects with medial knee OA (KL grade II-IV) undergoing high tibial osteotomy surgery (HTO) was analysed by mesoscale discovery and ELISA analysis for inflammatory, neural and bone turnover markers. 11 of these patients had been previously analysed in a published patient-specific musculoskeletal model6 of gait estimating joint contact location, pressure, forces, and medial-lateral condyle load distribution in a published data set included in analyses. Data analysis was performed using Pearson's correlation matrices and principal component analyses. Principal Components (PCs) with eigenvalues greater than 1 were analysed.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 363 - 363
1 Sep 2005
Lombardi A Mallory T Berend K
Full Access

Introduction and Aims: With interest in minimally invasive surgery, and smaller incisions for total hip arthroplasty (THA), ways to ensure appropriate alignment are critical. Femoral stem varus has been associated with poorer results. We report the incidence of varus placement of a tapered, proximally plasma-sprayed, titanium femoral component and describe the outcomes of varus at minimum five-year follow-up.

Method: Between 1986 and 1997, 1080 tapered, proximally plasma-sprayed femoral components were implanted in primary cementless THA at one institution. Twenty-six components in 25 patients were placed in five degrees or more of varus. Two patients were lost to follow-up. The need for further surgery was assessed and Harris hip scores evaluated.

Results: Harris hip scores improved an average of 44 points. All femoral components were judged to be osteo-integrated. There was no displacement or progression into further varus, or impending failures. One well-fixed stem was revised at an outside institution for unexplained pain at 2.5 years. Survival with aseptic loosening as an end-point is 100 percent. Overall survival of the femoral component is 96 percent at 10 years average follow-up.

Conclusion: As visualisation decreases with decreasing incision length, a component that is reliably placed into appropriate position is required. Implant position with this component is forgiving. It may be an excellent choice for less-invasive techniques with compromised visualisation. In varus, the stem performs well, with no revisions for aseptic loosening and a 96 percent survival at up to 16 years.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1348 - 1360
1 Nov 2024
Spek RWA Smith WJ Sverdlov M Broos S Zhao Y Liao Z Verjans JW Prijs J To M Åberg H Chiri W IJpma FFA Jadav B White J Bain GI Jutte PC van den Bekerom MPJ Jaarsma RL Doornberg JN

Aims

The purpose of this study was to develop a convolutional neural network (CNN) for fracture detection, classification, and identification of greater tuberosity displacement ≥ 1 cm, neck-shaft angle (NSA) ≤ 100°, shaft translation, and articular fracture involvement, on plain radiographs.

Methods

The CNN was trained and tested on radiographs sourced from 11 hospitals in Australia and externally validated on radiographs from the Netherlands. Each radiograph was paired with corresponding CT scans to serve as the reference standard based on dual independent evaluation by trained researchers and attending orthopaedic surgeons. Presence of a fracture, classification (non- to minimally displaced; two-part, multipart, and glenohumeral dislocation), and four characteristics were determined on 2D and 3D CT scans and subsequently allocated to each series of radiographs. Fracture characteristics included greater tuberosity displacement ≥ 1 cm, NSA ≤ 100°, shaft translation (0% to < 75%, 75% to 95%, > 95%), and the extent of articular involvement (0% to < 15%, 15% to 35%, or > 35%).


Bone & Joint Research
Vol. 8, Issue 2 | Pages 55 - 64
1 Feb 2019
Danese I Pankaj P Scott CEH

Objectives. Elevated proximal tibial bone strain may cause unexplained pain, an important cause of unicompartmental knee arthroplasty (UKA) revision. This study investigates the effect of tibial component alignment in metal-backed (MB) and all-polyethylene (AP) fixed-bearing medial UKAs on bone strain, using an experimentally validated finite element model (FEM). Methods. A previously experimentally validated FEM of a composite tibia implanted with a cemented fixed-bearing UKA (MB and AP) was used. Standard alignment (medial proximal tibial angle 90°, 6° posterior slope), coronal malalignment (3°, 5°, 10° varus; 3°, 5° valgus), and sagittal malalignment (0°, 3°, 6°, 9°, 12°) were analyzed. The primary outcome measure was the volume of compressively overstrained cancellous bone (VOCB) < -3000 µε. The secondary outcome measure was maximum von Mises stress in cortical bone (MSCB) over a medial region of interest. Results. Varus malalignment decreased VOCB but increased MSCB in both implants, more so in the AP implant. Varus malalignment of 10° reduced the VOCB by 10% and 3% in AP and MB implants but increased the MSCB by 14% and 13%, respectively. Valgus malalignment of 5° increased the VOCB by 8% and 4% in AP and MB implants, with reductions in MSCB of 7% and 10%, respectively. Sagittal malalignment displayed negligible effects. Well-aligned AP implants displayed greater VOCB than malaligned MB implants. Conclusion. All-polyethylene implants are more sensitive to coronal plane malalignments than MB implants are; varus malalignment reduced cancellous bone strain but increased anteromedial cortical bone stress. Sagittal plane malalignment has a negligible effect on bone strain. Cite this article: I. Danese, P. Pankaj, C. E. H. Scott. The effect of malalignment on proximal tibial strain in fixed-bearing unicompartmental knee arthroplasty: A comparison between metal-backed and all-polyethylene components using a validated finite element model. Bone Joint Res 2019;8:55–64. DOI: 10.1302/2046-3758.82.BJR-2018-0186.R2


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 86 - 86
2 Jan 2024
Feng M Dai S Ni J Mao G Dang X Shi Z
Full Access

Varus malalignment increases the susceptibility of cartilage to mechanical overloading, which stimulates catabolic metabolism to break down the extracellular matrix and lead to osteoarthritis (OA). The altered mechanical axis from the hip, knee to ankle leads to knee joint pain and ensuing cartilage wear and deterioration, which impact millions of the aged population. Stabilization of the remaining damaged cartilage, and prevention of further deterioration, could provide immense clinical utility and prolong joint function. Our previous work showed that high tibial osteotomy (HTO) could shift the mechanical stress from an imbalanced status to a neutral alignment. However, the underlying mechanisms of endogenous cartilage stabilization after HTO remain unclear. We hypothesize that cartilage-resident mesenchymal stem cells (MSCs) dampen damaged cartilage injury and promote endogenous repair in a varus malaligned knee. The goal of this study is to further examine whether HTO-mediated off-loading would affect human cartilage-resident MSCs' anabolic and catabolic metabolism. This study was approved by IACUC at Xi'an Jiaotong University. Patients with medial compartment OA (52.75±6.85 yrs, left knee 18, right knee 20) underwent open-wedge HTO by the same surgeons at one single academic sports medicine center. Clinical data was documented by the Epic HIS between the dates of April 2019 and April 2022 and radiographic images were collected with a minimum of 12 months of follow-up. Medial compartment OA with/without medial meniscus injury patients with unilateral Kellgren /Lawrence grade 3–4 was confirmed by X-ray. All incisions of the lower extremity healed well after the HTO operation without incision infection. Joint space width (JSW) was measured by uploading to ImageJ software. The Knee injury and Osteoarthritis Outcome Score (KOOS) toolkit was applied to assess the pain level. Outerbridge scores were obtained from a second-look arthroscopic examination. RNA was extracted to quantify catabolic targets and pro-inflammatory genes (QiaGen). Student's t test for two group comparisons and ANOVA analysis for differences between more than 2 groups were utilized. To understand the role of mechanical loading-induced cartilage repair, we measured the serial changes of joint space width (JSW) after HTO for assessing the state of the cartilage stabilization. Our data showed that HTO increased the JSW, decreased the VAS score and improved the KOOS score significantly. We further scored cartilage lesion severity using the Outerbridge classification under a second-look arthroscopic examination while removing the HTO plate. It showed the cartilage lesion area decreased significantly, the full thickness of cartilage increased and mechanical strength was better compared to the pre-HTO baseline. HTO dampened medial tibiofemoral cartilage degeneration and accelerate cartilage repair from Outerbridge grade 2 to 3 to Outerbridge 0 to 1 compared to untreated varus OA. It suggested that physical loading was involved in HTO-induced cartilage regeneration. Given that HTO surgery increases joint space width and creates a physical loading environment, we hypothesize that HTO could increase cartilage composition and collagen accumulation. Consistent with our observation, a group of cartilage-resident MSCs was identified. Our data further showed decreased expression of RUNX2, COL10 and increased SOX9 in MSCs at the RNA level, indicating that catabolic activities were halted during mechanical off-loading. To understand the role of cartilage-resident MSCs in cartilage repair in a biophysical environment, we investigated the differentiation potential of MSCs under 3-dimensional mechanical loading conditions. The physical loading inhibited catabolic markers (IL-1 and IL-6) and increased anabolic markers (SOX9, COL2). Knee-preserved HTO intervention alleviates varus malalignment-related knee joint pain, improves daily and recreation function, and repairs degenerated cartilage of medial compartment OA. The off-loading effect of HTO may allow the mechanoregulation of cartilage repair through the differentiation of endogenous cartilage-derived MSCs


Bone & Joint Research
Vol. 9, Issue 4 | Pages 182 - 191
1 Apr 2020
D’Ambrosio A Peduzzi L Roche O Bothorel H Saffarini M Bonnomet F

Aims. The diversity of femoral morphology renders femoral component sizing in total hip arthroplasty (THA) challenging. We aimed to determine whether femoral morphology and femoral component filling influence early clinical and radiological outcomes following THA using fully hydroxyapatite (HA)-coated femoral components. Methods. We retrospectively reviewed records of 183 primary uncemented THAs. Femoral morphology, including Dorr classification, canal bone ratio (CBR), canal flare index (CFI), and canal-calcar ratio (CCR), were calculated on preoperative radiographs. The canal fill ratio (CFR) was calculated at different levels relative to the lesser trochanter (LT) using immediate postoperative radiographs: P1, 2 cm above LT; P2, at LT; P3, 2 cm below LT; and D1, 7 cm below LT. At two years, radiological femoral component osseointegration was evaluated using the Engh score, and hip function using the Postel Merle d’Aubigné (PMA) and Oxford Hip Score (OHS). Results. CFR was moderately correlated with CCR at P1 (r = 0.44; p < 0.001), P2 (r = 0.53; p < 0.001), and CFI at P1 (r = − 0.56; p < 0.001). Absence of spot welds (n = 3, 2%) was associated with lower CCR (p = 0.049), greater CFI (p = 0.017), and lower CFR at P3 (p = 0.015). Migration (n = 9, 7%) was associated with lower CFR at P2 (p = 0.028) and P3 (p = 0.007). Varus malalignment (n = 7, 5%), predominantly in Dorr A femurs (p = 0.028), was associated with lower CFR at all levels (p < 0.05). Absence of spot welds was associated with lower PMA gait (p = 0.012) and migration with worse OHS (p = 0.032). Conclusion. This study revealed that femurs with insufficient proximal filling tend to have less favourable radiological outcomes following uncemented THA using a fully HA-coated double-tapered femoral component. Cite this article: Bone Joint Res. 2020;9(4):182–191


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 104 - 104
1 Feb 2015
Haidukewych G
Full Access

Periprosthetic fractures around a TKA typically involve the distal femur above a well-fixed femoral component. ORIF is typically indicated, using a retrograde nail or some form of locked plating. Tibial fractures after TKA are quite rare. In distinction to femoral fractures, fractures around a tibial component are typically associated with a loose prosthesis. Revision is indicated in this situation. Dealing with bone loss with augments, sleeves, cones, or allograft as well as stem bypass is typically necessary. Varus malalignment is often noted in these situations and should be corrected. More distal fractures can be managed with closed treatment if displacement and angulation is acceptable. A period of time in a long leg cast followed by conversion to a short leg or so-called PTB cast can be effective. More unstable fractures can be managed with plating techniques. Percutaneous so called MIPPO techniques can be particularly useful. Modern locking plates allow polyaxial proximal fixation that can be effective around the keels of tibial components. Malalignments are common so careful fluoroscopic scrutiny is necessary when using percutaneous techniques


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 4 | Pages 469 - 474
1 Apr 2009
Gulati A Pandit H Jenkins C Chau R Dodd CAF Murray DW

Varus malalignment after total knee replacement is associated with a poor outcome. Our aim was to determine whether the same was true for medial unicompartmental knee replacement (UKR). The anatomical leg alignment was measured prospectively using a long-arm goniometer in 160 knees with an Oxford UKR. Patients were then grouped according to their mechanical leg alignment as neutral (5° to 10° of valgus), mild varus (0° to 4° of valgus) and marked varus (> 0° of varus). The groups were compared at five years in terms of absolute and change in the Oxford Knee score, American Knee Society score and the incidence of radiolucent lines. Post-operatively, 29 (18%) patients had mild varus and 13 (8%) had marked varus. The mean American Knee Society score worsened significantly (p < 0.001) with increasing varus. This difference disappeared if a three-point deduction for each degree of malalignment was removed. No other score deteriorated with increasing varus, and the frequency of occurrence of radiolucent lines was the same in each group. We therefore conclude that after Oxford UKR, about 25% of patients have varus alignment, but that this does not compromise their clinical or radiological outcome. Following UKR the deductions for malalignment in the American Knee Society score are not justified


Bone & Joint Open
Vol. 4, Issue 8 | Pages 602 - 611
21 Aug 2023
James HK Pattison GTR Griffin J Fisher JD Griffin DR

Aims

To evaluate if, for orthopaedic trainees, additional cadaveric simulation training or standard training alone yields superior radiological and clinical outcomes in patients undergoing dynamic hip screw (DHS) fixation or hemiarthroplasty for hip fracture.

Methods

This was a preliminary, pragmatic, multicentre, parallel group randomized controlled trial in nine secondary and tertiary NHS hospitals in England. Researchers were blinded to group allocation. Overall, 40 trainees in the West Midlands were eligible: 33 agreed to take part and were randomized, five withdrew after randomization, 13 were allocated cadaveric training, and 15 were allocated standard training. The intervention was an additional two-day cadaveric simulation course. The control group received standard on-the-job training. Primary outcome was implant position on the postoperative radiograph: tip-apex distance (mm) (DHS) and leg length discrepancy (mm) (hemiarthroplasty). Secondary clinical outcomes were procedure time, length of hospital stay, acute postoperative complication rate, and 12-month mortality. Procedure-specific secondary outcomes were intraoperative radiation dose (for DHS) and postoperative blood transfusion requirement (hemiarthroplasty).


Bone & Joint Research
Vol. 8, Issue 6 | Pages 226 - 227
1 Jun 2019
Danese I Pankaj P Scott CEH