Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 125 - 125
1 Jan 2017
Anitha D Subburaj K Kirschke J Baum T
Full Access

Multiple myeloma (MM) is a chronic, malignant B-cell disorder, with a less than 50% 5-year survival rate [1]. This disease is responsible for vertebral compression fractures (VCFs) in 34 to 64% of diagnosed patients [1], and at least 80% of MM patients experience pathological fractures [3]. Even though reduced DXA-derived bone mineral density (BMD) has been observed in MM patients with vertebral fractures [4], the current quantitative standard method is insufficient in MM due to the osteo-destructive bone changes. Finite-element (FE) analysis is a computational and non-destructive modeling and testing approach to determine bone strength using 3D bone models from CT images. Thus, this study aimed to assess the differences in FE-predicted critical fracture load in MM patients with and without VCFs in the thoracic and lumbar segments of the spine. Multi-detector CT (MDCT) images of two radiologically assessed MM patients (1 with VCFs and 1 without VCFs) were used to generate three-dimensional (3D) models of the whole spine. For each subject, the thoracic segments, 1 to 12 (T1-T12) and lumbar segments, 1 to 5 (L1-L5) were segmented and meshed. Heterogeneous, non-linear anisotropic material properties were applied by discretizing each vertebral segment into 10 distinct sets of materials. A compressive load was simulated by constraining the surface nodes on the inferior endplate in all directions, and a displacement load was applied on the surface nods on the superior endplate [2]. This analysis was performed using ABAQUS version 6.10 (Hibbitt, Karlsson, and Sorensen, Inc., Pawtucket, RI, USA). The MM subject with VCFs had originally experienced fractures in the T4, T5, T12, L1, and L5 segments whereas the MM subject without VCFs experienced none. The former displayed large and abrupt differences in fracture loads between adjacent vertebrae segments, unlike the latter, which exhibited progressive differences instead (no abrupt changes between adjacent vertebrae segments observed). Results from this preliminary study suggest that segments at high risk of fracture are collectively involved in an unstable network, which place the vertebral segments with high values of fracture loads (peaks) as well as the adjacent segments at risk of VCF. For instance, the high fracture load at T11 places T10, T11 and T12 at risk of fracture. Accordingly, T12 has already fractured, and T10 and T11 remain at risk. The relative changes between adjacent vertebrae segments that indicate instability (extremely high fracture load values) enables ease of identification of segments at high fracture risk. Clinicians would be able to work with pre-emptive treatment strategies in future as they can focus on more targeted therapy options at the high-risk vertebrae segments [3]


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_17 | Pages 5 - 5
1 Apr 2013
Van Meirhaeghe J Bastian L Boonen S Ranstam J Tillman J Wardlaw D
Full Access

Purpose. To compare the efficacy and safety of balloon kyphoplasty (BKP) to non-surgical management (NSM) over 24 months in patients with acute painful fractures by clinical outcomes and vertebral body kyphosis correction and surgical parameters. Material and Methods. Three hundred Adult patients with one to three VCF's were randomised within 3 months of the acute fracture; 149 to Balloon Kyphoplasty and 151 to Non-surgical management. Subjective QOL assessments and objective functional (Timed up and go [TUG]) and vertebral body kyphotic angulation (KA), were assessed over 24 months; we also report surgical parameters and adverse events temporally related to surgery (within 30-days). Results. Kyphoplasty was associated with greater improvements in SF-36 PCS scores when averaged across the 24-month follow-up period, compared with NSM (overall treatment effect 3.24points, 95% CI, 1.47–5.01; p=0.0004)., and TUG (overall treatment effect −3.00 seconds, 95% CI, −1.0 to −5.1; p<0.0043). At 24 months, the change from baseline in KA was statistically significantly improved in the kyphoplasty group (average 3.1°of correction for BKP versus 0.8°for NSM, p=0.003). On average IBT inflation volumes were consistent with cement volumes at 2.4 cc per side. The most common adverse events within 30-days were back pain, new vertebral fracture, nausea/vomiting and UTI. BKP is calculated to be cost-effective in the UK setting. Conclusions. Compared with NSM, BKP improves patient function and QOL when averaged over 24-months and results in better improvement of index vertebral body kyphotic angulation. Author potential conflicts of interest; JVM, LB; SB, DW and JR are consultants for Medtronic Spine LLC for the FREE study; JBT is currently employed by Medtronic, Inc


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 52 - 52
1 Jul 2014
Garner P Wilcox R Aaron J
Full Access

Summary Statement. Prophylactic vertebroplasty treatment of ‘at-risk’ vertebrae may reduce fracture risk, however which areas weaken, thus providing surgical targets? Direct spatial 3D mapping of ReTm overcomes the constraints of 2D histology, and by application may provide insight into specific regional atrophy. Introduction. Insidious bone loss with age makes the skeleton fracture-prone in the rapidly expanding elderly population. Diagnosis of osteoporosis is often made after irreversible damage has occurred. There are over 300,000 new fragility fractures annually in the UK, more than 120,000 of these being vertebral compression fractures (VCF). Some VCFs cause life-altering pain, requiring surgical intervention. Vertebroplasty is a minimally invasive procedure whereby bone cement is injected into the damaged vertebral body with the aim of stabilisation and pain alleviation. However, vertebroplasty can alter the biomechanics of the spine, apparently leaving adjacent vertebrae with an increased VCF risk. Prophylactic augmentation of intact, though ‘at-risk’, vertebrae may reduce the risk of adverse effects. The question therefore arises as to which areas of a non-fractured vertebral body, structurally weakened with age, and thus should be targeted. Frequent reports of an overlap in BMD (bone mineral density) between fracture and non-fracture subjects suggest the combination of bone quantity and its ‘quality’ (microarchitectural strength) may be a more reliable fracture predictor than BMD alone. Providing a reliable method of cancellous connectivity measurement (a highly significant bone strength factor) is challenging. Traditional histological methods for microarchitectural interconnection are limited as they usually indirectly extrapolate 3D structure from thin (8 µm) 2D undecalcified sections. To address this difficulty, Aaron et al (2000) developed a novel, thick (300 µm) slicing and superficial staining procedure, whereby unstained real (not stained planar artifactual) trabecular termini (ReTm) are identified directly within their 3D context. The aim of this study was to automate a method of identifying trabecular regions of weakness in vertebral bodies from ageing spines. Patients and methods. 27 Embalmed cadaveric vertebral bodies (T10-L3) from 5 women (93.2±8.6 years) and 3 men (90±4.4 years) were scanned by µCT (micro-computerised tomography; µCT80, Scanco Medical, Switzerland, 74 µm voxel size), before plastic-embedding, slicing (300µm thick), and surface-staining with the von Kossa (2% silver nitrate) stain. The ReTm were mapped using light microscopy, recording their coordinates using the integrated stage, mapping them within nine defined sectors to demonstrate any apparent loci of structural disconnectivity that may cause weakness disproportionate to the bone loss. A transparent 3D envelope corresponding to the cortex, was constructed using code developed in-house (Matlab 7.3, Mathworks, USA), and was modulated and validated by overlay of the previous µCT scan and the coordinate data. Results. The ReTm distribution was found to be remarkably heterogeneous (p<0.05) and independent of the bone volume (p<0.05). For example, there was preliminary evidence of central endplate disconnection predominantly in the selected preparations. Discussion/Conclusion. Such automated spatial mapping of the ReTm within a 3D framework overcomes the constraints of 2D histology. By application of this new automated method, patterns of trabecular disconnection in the spine may now provide insight into specific regional atrophy, perhaps explaining why some vertebrae fracture while others with the same BMD do not, and indicating better targets for prophylactic vertebroplasty