Advertisement for orthosearch.org.uk
Results 1 - 13 of 13
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 14 - 14
1 Jun 2023
Ong G Hoellwarth J Oomatia A Al Muderis M
Full Access

Introduction. Approximately 2,000 Skeletal transcutaneous osseointegration (STOI) procedures have been performed worldwide as of 2020, more than half of which have been performed by the Osseointegration Group of Australia using a press-fit technique with either ILP or OPL implant designs. Despite the consistently demonstrated clinical benefits, concerns regarding potential complications following STOI have slowed its widespread adoption. As more patients are followed for a longer period of time, longitudinal studies have confirmed complication rates are very acceptable, similar to those of total ankle and total elbow replacements. One of the major risk category is implant removal. The primary goal of this study was to investigate the complications and technical issues associated with transtibial osseointegration implant removal due to any cause. The focus here will be on the press-fit ILP and OPL implants, including the indications for removal and patient outcomes following removal. Materials & Methods. A review of our osseointegration registry between November 2010 and March 2022 was performed. Inclusion criteria were patients who have undergone removal of a transtibial osseointegration implant due to any cause. Selected patients either had a follow-up of at least two years or had their index osseointegration surgery at least two years prior to when the study was performed. Patients who have had osseointegration at other anatomic levels, and patients who underwent simultaneous total knee replacement with transtibial osseointegration were excluded from the registry search. Results. There were a total of 148 transtibial osseointegration procedures performed during the study period, with 97 (65.5%) performed in males and 51 (34.5%) performed in females. The average age at first stage osseointegration procedure is 50.4 years (range 16.8–87.9, SD 14.1). In the study cohort of 22 cases requiring implant removals, 12 (54.5%) were male and 10 (45.5%) were female. The average age at first stage osseointegration procedure in this cohort is 51.3 (range 37.4–82.6, SD 10.7) and average BMI 30.3 (range 21.9–40.9, SD 5.8). Although men comprised the majority of removals, women had a greater relative risk (Fisher exact test p=0.032). The average duration from time of STOI to removal was 2.6 years (range 0.1–6.8, SD 1.9) within this 11.5 year follow-up period. The most frequent indication was infection (54.6%, n=12) followed equally by pain (13.6%, n=3), aseptic loosening (13.6%, n=3) and implant fracture (13.6%, n=3), and lastly failure to integrate (4.6%, n=1). Conclusions. Of the 22 removals, 12 were reimplanted at the same anatomical level (10 were reimplanted within 6 months, 1 within 12 months, and 1 within 24 months). 11 of these cases currently wear their prosthetic legs for more than 13 hours daily. 1 case was recently reimplanted and still completing their loading program. Of the patients who were not reimplanted at the same anatomical level, 1 required proximal amputation with transfemoral osseointegration. 3 patients converted to traditional socket prostheses (TSP) due to pain, and 1 underwent proximal amputation and converted to TSP due to infection. 3 cases are currently awaiting transtibial osseointegration reimplantation, and 1 patient was deceased. 1 patient was lost to follow-up


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 7 - 7
1 Apr 2022
Lu W Oomatia A Muderis MA
Full Access

Introduction. Osseointegration is a potential treatment option for transfemoral amputees experiencing socket related problems. Till this date, there is little data assessing the feasibility and advantages of osseointegration in individuals with transtibial amputations. Materials and Methods. We prospectively followed 91 patients undergoing transtibial osseointegration from 2014–2018 who either 1) reported pain or mobility dissatisfaction with socket prosthesis; 2) had an intact limb with incapacitating pain, complex deformity, or profound distal weakness or 3) were recent amputees preferring osseointegration. Adverse events were monitored including infection, periprosthetic fracture, implant breakage, aseptic loosening, revision surgery/additional amputation and death. Functional outcomes were measured using the Questionnaire of persons with a Trans-femoral amputation (Q-TFA) and mobility was assessed using Six Minute Walk Test (6MWT) and Time Up and Go (TUG). Results. Following osseointegration surgery, there was a significant increase in the Q-TFA global score, the 6MWT and the K-levels during follow-up. At one year following Osseointegration surgery, all patients were pain-free, the 11 patients who were wheelchair-bound prior to surgery were ambulatory, and the other 27 patient unable to walk prior to surgery, demonstrated improved mobility. There were 7 cases of implant removals due to pain and loosening and 10 cases of revisions within an average of 1.8 years, of which 1 was aseptic loosening, 6 due to infection, 1 failure to integrate and 2 implant fractures. No periprosthetic bone fractures occurred. Conclusions. Transtibial osseointegration results in improved functional outcomes after amputation. Complications are manageable and should decrease with surgical and implant improvements


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 18 - 18
1 Jun 2023
Hoellwarth J Oomatia A Al Muderis M
Full Access

Introduction. Transtibial osseointegration (TFOI) for amputees has limited but clear literature identifying superior quality of life and mobility versus a socketed prosthesis. Some amputees have knee arthritis that would be relieved by a total knee replacement (TKR). No other group has reported performing a TKR in association with TTOI (TKR+TTOI). We report the outcomes of nine patients who had TKR+TTOI, followed for an average 6.5 years. Materials & Methods. Our osseointegration registry was retrospectively reviewed to identify all patients who had TTOI and who also had TKR, performed at least two years prior. Four patients had TKR first the TTOI, four patients had simultaneous TKR+TTOI, and one patient had 1 OI first then TKR. All constructs were in continuity from hinged TKR to the prosthetic limb. Outcomes were: complications prompting surgical intervention, and changes in daily prosthesis wear hours, Questionnaire for Persons with a Transfemoral Amputation (QTFA), and Short Form 36 (SF36). All patients had clinical follow-up, but two patients did not have complete survey and mobility tests at both time periods. Results. Six (67%) were male, average age 51.2±14.7 years. All primary amputations were performed to manage traumatic injury or its sequelae. No patients died. Five patients (56%) developed infection leading to eventual transfemoral amputation 36.0±15.3 months later, and 1 patient had a single debridement six years after TTOI with no additional surgery in the subsequent two years. All patients who had transfemoral amputation elected for and received transfemoral osseointegration, and no infections occurred, although one patient sustained a periprosthetic fracture which was managed with internal fixation and implant retention and walks independently. The proportion of patients who wore their prosthesis at least 8 hours daily was 5/9=56%, versus 7/9=78% (p=.620). Even after proximal level amputation, the QTFA scores improved versus prior to TKR+TTOI, although not significantly: Global (45.2±20.3 vs 66.7±27.6, p=.179), Problem (39.8±19.8 vs 21.5±16.8, p=.205), Mobility (54.8±28.1 vs 67.7±25.0, p=.356). SF36 changes were also non-significant: Mental (58.6±7.0 vs 46.1±11.0, p=.068), Physical (34.3±6.1 vs 35.2±13.7, p=.904). Conclusions. TKR+TTOI presents a high risk for eventual infection prompting subsequent transfemoral amputation. Although none of these patients died, in general, TKR infection can lead to patient mortality. Given the exceptional benefit to preserving the knee joint to preserve amputee mobility and quality of life, it would be devastating to flatly force transtibial amputees with severe degenerative knee joint pain and unable to use a socket prosthesis to choose between TTOI but a painful knee, or preemptive transfemoral amputation for transfemoral osseointegration. Therefore, TTOI for patients who also request TKR must be considered cautiously. Given that this frequency of infection does not occur in patients who have total hip replacement in association with transfemoral osseointegration, the underlying issue may not be that linked joint replacement with osseointegrated limb replacement is incompatible, but may require further consideration of biological barriers to ascending infection and/or significant changes to implant design, surgical technique, or other yet-uncertain factors


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 49 - 49
1 Aug 2013
Sampath S Voon H Sangster M Davies H
Full Access

Background. Recent publications have supported the anatomic placement of anterior cruciate grafts to optimise knee function. However, anatomic placement using the anteromedial portal has been shown to have a higher failure rate than traditional graft placement using the transtibial method. This is possibly due to it being more technically difficult and to the short femoral tunnel compromising fixation methods. It also requires the knee to be in hyper flexion. This position is not feasible during with a tourniquet in situ on the heavily muscled thighs of some athletes. Hypothesis: That navigation can be used to place the femoral tunnel in the anatomic position via a more medial transtibial tunnel. Methods. 25 patients underwent Navigated Anterior Cruciate reconstruction with quadruple hamstring grafts. The Orthopilot™ 3.0 ACL (BBraun Aesculap, Tuttlingen) software was used. The femoral and tibial ACL footprints were marked on the bones with a radio frequency probe and registered. The pivot shift test, anterior drawer and internal and external rotation were registered. A navigated tibial guide wire was inserted at 25° to the sagittal plane and 45° to the transverse plane exiting through the centre of the tibial footprint. The guide wire was advanced into the joint to just clear of the surface of the femoral footprint with the knee in 90° flexion. Flexion/extension of the knee was done to determine the closest position of the guide wire tip to the centre of the anatomical femoral footprint. If the tip was within 2mm of the centre of footprint, the position was accepted. If not the tibial guide wire was repositioned and the process repeated. The tibial tunnel was drilled, followed by transtibial drilling of the femoral tunnel. A screen shot was done to allow determination of the shape and area of the tunnel aperture relative to the femoral footprint using ImageJ (National Institute of Health). The graft was fixed proximally with an Arthrex ACL Tightrope® and distally with a Genesys™ interference screw. The pivot shift test, anterior drawer and internal and external rotation were repeated and recorded using the software. Results. In 22 out of 25 patients the centre of the drill hole was within 2mm of the centre of the anatomic femoral footprint. In 3 patients it was between 2 and 4 mm off centre. The femoral tunnel diameter ranged from 7.5mm to 9.5mm. In 23 knees there was more than 80 % overlap between the tunnel aperture and the anatomical footprint. In the other 2 knees there was 65% and 75% overlap respectively. The direction of the final tibial tunnel ranged from 22° to 28° from the sagittal plane and 42° to 49° from the transverse plane. The optimum knee flexion was between 76° and 94°. In all cases, the pivot shift recorded by the software was absent after graft fixation. There was a statistically significant difference between the anterior drawer, internal and external rotation before and after graft fixation (p<0.05). Conclusion. Based on our data, navigation allows reproducible transtibial anatomic placement of the quadruple hamstring ACL graft. This is possible when the position of the tibial tunnel is customised to the anatomy of the individual patient's knee


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_19 | Pages 10 - 10
1 Apr 2013
Elnikety S El-Husseiny M Kamal T Gregoras M Talawadekar G Jeer P
Full Access

Introduction. The transtibial approach is widely used for femoral tunnel positioning in ACL reconstruction. Controversy exists over the superiority of this approach over others. Few studies reflected on the reproducibility rates of the femoral tunnel position in relation to the approach used. Methods. We reviewed AP and Lat X-ray radiographs post isolated ACL reconstruction for 180 patients for femoral tunnel position, tibial tunnel position and graft inclination angle. All patients had their operations performed by one surgeon in one hospital between March 2006 and Sep 2010. All operations were performed using one standard technique using transtibial approach for femoral tunnel positioning. Two orthopaedic fellows, with similar experiences, reviewed blinded radiographs. A second reading was done 8 weeks later. Pearson inter-observer and intra-observer correlation analyses were done using SPSS. Mean age was 29 years (range 16–54). Results. Pearson intra-observer correlation shows substantial to perfect agreement while Pearson's inter-observer correlation shows moderate to substantial agreement. Previous literature proved that optimal femoral tunnel position for the best clinical and biomechanical outcome is for the centre of the tunnel to be at 43% from the lateral end of the width of the femoral condyles on the AP view and at 86% from the anterior end of the Blumensaat's line on the lateral view. In our study 85% of the femoral tunnels were within +/− 5% of the optimal tunnel position on the AP views (43%), and more than 70% of the femoral tunnels were within +/−5% of the optimal tunnel position on the Lateral view (86%). Conclusion. Based on our results we concluded that using one standardised transtibial technique for ACL reconstruction can result in high reproducibility rates of optimal femoral tunnel position. Further studies are needed to validate our results and to study the reproducibility rates for different approaches and techniques


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLII | Pages 3 - 3
1 Sep 2012
Elnikety S El-Husseiny M Kamal T Gregoras M Talawadekar G Jeer PJS
Full Access

The transtibial approach is widely used for femoral tunnel positioning in ACL reconstruction. Controversy exists over the superiority of this approach over others. Few studies reflected on the reproducibility rates of the femoral tunnel position in relation to the approach used. We reviewed AP and Lat X-ray radiographs post isolated ACL reconstruction for 180 patients for femoral tunnel position, tibial tunnel position and graft inclination angle. All patients had their operations performed by one surgeon in one hospital between March 2006 and Sep 2010. All operations were performed using one standard technique using transtibial approach for femoral tunnel positioning. Two orthopaedic fellows, with similar experiences, reviewed blinded radiographs. A second reading was done 8 weeks later. Pearson inter-observer, intra-observer correlation and Bland-Altman agreements plots statistical analyses were done. Mean age was 29 years (range 16–54), Pearson intra-observer correlation shows substantial to perfect agreement while Pearson's inter-observer correlation shows moderate to substantial agreement. Previous literature proved that optimal femoral tunnel position for the best clinical and biomechanical outcome is for the centre of the tunnel to be at 43% from the lateral end of the width of the femoral condyles on the AP view and at 86% from the anterior end of the Blumensaat's line on the lateral view. In our study 85% of the femoral tunnels were within +/− 5% of the optimal tunnel position on the AP views, and more than 70% of the femoral tunnels were within +/−5% of the optimal tunnel position on the Lateral view. Interobserver and intraobserver corelations show moderate to substantial agreement, Bland-Altman agreement plots show substantial agreements for interobserver and intraobserver measurements. These results were found to be statistically significant at 0.01. Based on our results we conclude that using one standardised transtibial technique for ACL reconstruction can result in high reproducibility rates of optimal femoral tunnel position. Further studies are needed to validate our results and to study the reproducibility rates for different approaches and techniques


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_19 | Pages 9 - 9
1 Apr 2013
Pankaj A Sharma G
Full Access

Introduction. Transportal technique of femoral drilling allows the femoral tunnel to be placed in anatomic location. The study was conducted to evaluate the orientation of ACL graft performed by two different techniques and compared to orientation of native ACL. Materials/Methods. 50 patients (Group A) underwent ACL reconstruction with transtibial technique using transfix on the femoral side and 30 patients (Group B) underwent ACL reconstruction with transportal technique using endobutton. We used quadrupled hamstrings graft and tibial fixation was achieved with bio-absorbable screws. All patients were evaluated with 3 Tesla MRI at 6 months post-operatively and femoral tunnel angle in coronal plane (FTA), tibial tunnel angle (TTA) in sagittal plane, graft angle in coronal plane (GA coronal), graft angle in sagittal plane (GA sagittal), and graft- Blumensaat line angle (GBLA) were measured. A control group of patients (Group C, n=50)was also included to evaluate the orientation of native ACL. Results. The femoral tunnel angle (FTA) was significantly lower in group B as compared to group A, 54.03±5.05 vs 71.6±6.02, p<0.05. The tibial tunnel angle (TTA) was similar in group A and B, 65±5.2 vs. 62.9±4.5, p>0.05. Graft angle in coronal plane (GA coronal) was significantly lower in group B when compared to group A, 62.4±5.6 vs 72.5±5.5, p<0.05, and there was no significant difference between group B and C. Similarly graft angle in sagittal plane (GA sagittal) in group B was found to be significantly lower as compared to group A and similar to group C, 51.2±4.3 vs 65.3±3.6, p<0.05. The graft-Blumensaat line angle (GBLA) was significantly lower in group B as compared to Group A, 8.6±1.4 vs 13.5±1.2, p<0.05. Conclusions. The orientation of the reconstructed ligament was found to be closer to the native ACL in transportal technique of femoral drilling


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 102 - 102
1 Sep 2012
Pankaj A Sharma G
Full Access

Transportal technique of femoral drilling allows the femoral tunnel to be placed in anatomic location. The study was conducted to evaluate the orientation of ACL graft performed by two different techniques and compared to orientation of native ACL. 50 patients (Group A) underwent ACL reconstruction with transtibial technique using transfix on the femoral side and 30 patients (Group B) underwent ACL reconstruction with transportal technique using endobutton. We used quadrupled hamstrings graft and tibial fixation was achieved with bioabsorbable screws. All patients were evaluated with 3 Tesla MRI at 6 months post-operatively and femoral tunnel angle in coronal plane (FTA), tibial tunnel angle (TTA) in sagittal plane, graft angle in coronal plane (GA coronal), graft angle in sagittal plane (GA sagittal), and graft-Blumensaat line angle (GBLA) were measured. A control group of patients (Group C, n=50)was also included to evaluate the orientation of native ACL. The femoral tunnel angle (FTA) was significantly lower in group B as compared to group A, 54.03±5.05 vs 71.6±6.02, p<0.05. The tibial tunnel angle (TTA) was similar in group A and B, 65±5.2 vs. 62.9±4.5, p>0.05. Graft angle in coronal plane (GA coronal) was significantly lower in group B when compared to group A, 62.4±5.6 vs 72.5±5.5, p<0.05, and there was no significant difference between group B and C. Similarly graft angle in sagittal plane (GA sagittal) in group B was found to be significantly lower as compared to group A and similar to group C, 51.2±4.3 vs 65.3±3.6, p<0.05. The graft-Blumensaat line angle (GBLA) was significantly lower in group B as compared to Group A, 8.6±1.4 vs 13.5±1.2, p<0.05. The orientation of the reconstructed ligament was found to be closer to the native ACL in transportal technique of femoral drilling


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 31 - 31
1 Aug 2013
Firth G Kontio K Mosquijo J
Full Access

Purpose:

Despite advances in limb reconstruction, there are still a number of young patients who require trans-tibial amputation. Amputation osteoplasty is a technique described by Ertl to enhance rehabilitation after trans-tibial amputation. The purpose of the present study was to evaluate the results of the original Ertl procedure in skeletally immature patients, and to assess whether use of this procedure would result in a diminished incidence of bony overgrowth.

Methods:

Four consecutive patients (five amputations) treated between January 2005 and June 2008 were reviewed. Clinical evaluation consisted of completion of the prosthesis evaluation questionnaire (PEQ) and physical examination. Radiographic analysis was performed to evaluate bone-bridge healing, bone overgrowth and the medial proximal tibial angle (MPTA).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 56 - 56
23 Feb 2023
Rahardja R Love H Clatworthy M Young S
Full Access

Arthrofibrosis is a less common complication following anterior cruciate ligament (ACL) reconstruction and there are concerns that undergoing early surgery may be associated with arthrofibrosis. The aim of this study was to identify the patient and surgical risk factors for arthrofibrosis following primary ACL reconstruction. Primary ACL reconstructions prospectively recorded in the New Zealand ACL Registry between April 2014 and December 2019 were analyzed. The Accident Compensation Corporation (ACC) database was used to identify patients who underwent a subsequent reoperation with review of operation notes to identify those who had a reoperation for “arthrofibrosis” or “stiffness”. Univariate Chi-Square test and multivariate Cox regression analysis was performed. Hazard ratios (HR) with 95% confidence intervals (CI) were computed to identify the risk factors for arthrofibrosis. 9617 primary ACL reconstructions were analyzed, of which 215 patients underwent a subsequent reoperation for arthrofibrosis (2.2%). A higher risk of arthrofibrosis was observed in female patients (adjusted HR = 1.67, 95% CI 1.22 – 2.27, p = 0.001), patients with a history of previous knee surgery (adjusted HR = 1.97, 95% CI 1.11 – 3.50, p = 0.021) and when a transtibial femoral tunnel drilling technique was used (adjusted HR = 1.55, 95% CI 1.06 – 2.28, p = 0.024). Patients who underwent early ACL reconstruction within 6 weeks of their injury did not have a higher risk of arthrofibrosis when compared to patients who underwent surgery more than 6 weeks after their injury (3.5% versus 2.1%, adjusted HR = 1.56, 95% CI 0.97 – 2.50, p = 0.07). Age, graft type and concomitant meniscal injury did not influence the rate of arthrofibrosis. Female sex, a history of previous knee surgery and a transtibial femoral tunnel drilling technique are risk factors for arthrofibrosis following primary ACL reconstruction


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 44 - 44
1 Jul 2014
Stiehl J
Full Access

In TKA, prosthetic femoral and tibial implants must be symmetrically placed and matched in the mechanical axis and the ligament gaps must be correctly balanced. The collateral ligaments are the key guide, as they arise from the epicondyles of the distal femur, are perpendicular to the AP axis of Whiteside, and are coincident with the transtibial axis of the proximal tibial surface. A perpendicular bisection of the transtibial axis creates the AP axis of the tibia which is coincident in space with the AP axis of Whiteside (Berger). Measured distal femoral resection targets including TEA, AP axis of Whiteside, and 3 degrees external to the posterior condylar axis works because the stout posterior cruciate ligament limits laxity in flexion, allowing for the anatomical variation of these landmarks to be accommodated. The Insall, Ranawat gap balancing methods work to balance the knee in flexion, often matching the results of a measured resection, but guaranteeing a symmetrically balanced flexion gap. Distal femoral internal rotation can result if the medial collateral is over-released, but experience has shown this not to be a problem if the gaps are well balanced. Tibial tray position must be placed coincident with the AP axis of the tibia, which also is coincident with Akagi's line (line from medial margin of patellar tendon to center of the posterior cruciate ligament). The surgeon can make a line from the AP axis of Whiteside to the anterior tibial which matches the AP tibial axis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 100 - 100
1 Sep 2012
Wotherspoon S Webster K Feller J
Full Access

ACL reconstruction is successful in restoring sagittal stability of the knee but has been less consistent in restoring rotational stability. Increasing coronal graft obliquity improves rotational constraint of the knee in cadaveric biomechanical models. The purpose of this study was to determine whether there is a correlation between coronal graft alignment and tibial rotation during straight line activities. Seventy-four patients who had undergone ACL reconstruction using a transtibial technique were evaluated. They came from three distinct time periods during which the operating surgeon had deliberately changed the position of the femoral tunnel to progressively achieve a more oblique graft alignment in the coronal plane. Post-operative radiographs were analyzed for the coronal graft orientation and femoral and tibial tunnel positions. Tibial rotation was measured during level walking (n=74) and single-limb landing (n=42) tasks using a motion analysis system. Radiographic measurements of graft and tunnel orientation were correlated with rotational excursion of the knee recorded during these tasks. No correlations were found between knee rotational excursion and either the coronal tibial tunnel angle or the coronal graft angle during level walking. For the single-limb landing task, a significant negative correlation was observed between the coronal angle of the tibial tunnel and rotational excursion (r=−0.3, p=0.05) i.e. increasing tunnel obliquity was associated with decreasing rotational excursion. For the coronal angle of the ACL graft, the correlation was also negative, but was not significant (r=−0.24, p=0.12). Increases in graft obliquity in the coronal plane were associated with reduced tibial rotational excursions during single limb landing. These findings support the notion that ACL graft orientation may play a role in rotational kinematics of the ACL reconstructed knee, particularly during higher impact activities


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 180 - 180
1 May 2012
Hohmann E Tay M Tetsworth K Bryant A
Full Access

Previous research has shown that tunnel placement is critical in ACL reconstruction. The ultimate position of both the femoral and tibial tunnel determines knee kinematics and overall function of the knee post surgery. As with all techniques there is a definite learning curve for the arthroscopic technique. However, the effect of the learning curve on tunnel placement has been studied sparsely. The purpose of this project therefore is to investigate the effect of the learning curve on tunnel placement. Postoperative radiographs of the first 200 anterior cruciate reconstructions with bone-tendon-bone patella tendon of a single orthopaedic surgeon performed during the first four years of independent practice were analysed for tunnel placement. Radiographs were digitalised and imported into a CAD program. Tunnel placement both femoral and tibial antero-posterior and sagittal was assessed using Sommer's criteria. A rating scale was developed to assess overall placement. A total of 100 points indicated perfect placement. A maximum of 30 points each were allocated for sagittal femoral and tibial placement and a maximum of 20 points each were allocated for coronal placement. Tunnel placement scores improved from 66 for the first 25 procedures to 87 for the last 25 procedures. Sagittal femoral placement (zone 1–4 with zone 1 being the preferred zone of placement) improved from an average of 1.44 to 1.08. Sagittal tibial placement (45% from anterior border of tibia) did not change significantly and remained between 42.82 t0 44.76%. Coronal femoral placement (between 10:00–11:00 o'clock for the right knee and 1:00–2:00 for the left knee) ranged from 10.45–11.15 and 12:45-1:15 o'clock respectively. This finding may be related to the transtibial tibial technique used to place the femoral tunnel. Coronal tibial placement (45% from medial tibial border) ranged from 45-46.58%. Correct placement of the femoral and tibial bone tunnels is important for a successful reconstruction of the anterior cruciate ligament (ACL). This study demonstrated a definitive learning curve and steady improvement of tunnel placement. Whilst there was no significant improvement in sagittal placement, overall placement improved significantly