Advertisement for orthosearch.org.uk
Results 1 - 20 of 25
Results per page:
Bone & Joint Research
Vol. 6, Issue 6 | Pages 358 - 365
1 Jun 2017
Sanghani-Kerai A Coathup M Samazideh S Kalia P Silvio LD Idowu B Blunn G

Objectives. Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration. Methods. MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts. Results. MSCs from OVX rats migrate significantly (p < 0.05) less towards SDF-1 (9%, . sd. 5%) compared with MSCs from adult (15%, . sd. 3%) and young rats (25%, . sd. 4%). Cells transfected with CXCR4 migrated significantly more towards SDF-1 compared with non-transfected cells, irrespective of whether these cells were from OVX (26.5%, . sd. 4%), young (47%, . sd. 17%) or adult (21%, . sd. 4%) rats. Transfected MSCs differentiated to osteoblasts express CXCR4 but do not migrate towards SDF-1. Conclusions. MSC migration is impaired by age and osteoporosis in rats, and this may be associated with a significant reduction in bone formation in osteoporotic patients. The migration of stem cells can be ameliorated by upregulating CXCR4 levels which could possibly enhance fracture healing in osteoporotic patients. Cite this article: A. Sanghani-Kerai, M. Coathup, S. Samazideh, P. Kalia, L. Di Silvio, B. Idowu, G. Blunn. Osteoporosis and ageing affects the migration of stem cells and this is ameliorated by transfection with CXCR4. Bone Joint Res 2017;6:–365. DOI: 10.1302/2046-3758.66.BJR-2016-0259.R1


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 89 - 89
2 Jan 2024
Runzer C Sadowska J Plank C O'Brien F van Griensven M Balmayor E
Full Access

Bone morphogenetic proteins (BMPs) have been widely investigated for treating non-healing fractures. They participate in bone reconstruction by inducing osteoblast differentiation, and osteoid matrix production.1 The human recombinant protein of BMP-7 was among the first growth factors approved for clinical use. Despite achieving comparable results to autologous bone grafting, severe side effects have been associated with its use.2 Furthermore, BMP-7 was removed from the market.3 These complications are related to the high doses used (1.5-40 miligrams per surgery)2 compared to the physiological concentration of BMP in fracture healing (in the nanogram to picogram per milliliter range).4 In this study, we use transcript therapy to deliver chemically modified mRNA (cmRNA) encoding BMP-7. Compared to direct use of proteins, transcript therapy allows the sustained synthesis of proteins with native conformation and true post-translational modifications using doses comparable to the physiological ones.5 Moreover, cmRNA technology overcomes the safety and affordability limitations of standard gene therapy i.e. pDNA.6 BMP-7 cmRNA was delivered using Lipofectamine™ MessengerMAX™ to human mesenchymal stromal cells (hMSCs). We assessed protein expression and osteogenic capacity of hMSCs in monolayer culture and in a house-made, collagen hydroxyapatite scaffold. Using fluorescently-labelled cmRNA we observed an even distribution after loading complexes into the scaffold and a complete release after 3 days. For both monolayer and 3D culture, BMP-7 production peaked at 24 hours post-transfection, however cells transfected in scaffolds showed a sustained expression. BMP-7 transfected hMSCs yielded significantly higher ALP activity and Alizarin red staining at later timepoints compared to the untransfected group. Interestingly, BMP-7 cmRNA treatment triggered expression of osteogenic genes like OSX, RUNX-2 and OPN, which was also reflected in immunostainings. This work highlights the relevance of cmRNA technology that may overcome the shortcomings of protein delivery while circumventing issues of traditional pDNA-based gene therapy for bone regeneration.

Acknowledgement: This work has been performed as part of the cmRNAbone project and has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement No 874790.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1660 - 1665
1 Dec 2006
Surendran S Kim SH Jee BK Ahn SH Gopinathan P Han CW

We stably transfected early passage chondrocytes with an anti-apoptotic Bcl-2 gene in vitro using a retrovirus vector. Samples of articular cartilage were obtained from 11 patients with a mean age of 69 years (61 to 75) who were undergoing total knee replacement for osteoarthritis. The Bcl-2-gene-transfected chondrocytes were compared with non-transfected and lac-Z-gene-transfected chondrocytes, both of which were used as controls. All three groups of cultured chondrocytes were incubated with nitric oxide (NO) for ten days. Using the Trypan Blue exclusion assay, an enzyme-linked immunosorbent assay and flow cytometric analysis, we found that the number of apoptotic chondrocytes was significantly higher in the non-transfected and lac-Z-transfected groups than in the Bcl-2-transfected group (p < 0.05). The Bcl-2-transfected chondrocytes were protected from NO-induced impairment of proteoglycan synthesis.

We conclude that NO-induced chondrocyte death involves a mechanism which appears to be subject to regulation by an anti-apoptotic Bcl-2 gene. Therefore, Bcl-2 gene therapy may prove to be of therapeutic value in protecting human articular chondrocytes.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 147 - 147
11 Apr 2023
Baker M Clinton M Lee S Castanheira C Peffers M Taylor S
Full Access

Osteoarthritis (OA) of the equine distal interphalangeal joint (DIPJ) is a common cause of lameness. MicroRNAs (miRNAs) from biofluids such as plasma and synovial fluid make promising biomarker and therapeutic candidates. The objectives of this study are (1) Identify differentially expressed (DE) miRNAs in mild and severe equine DIPJ OA synovial fluid samples and (2) Determine the effects of DE miRNAs on equine chondrocytes in monolayer culture. Synovial fluid samples from five horses with mild and twelve horses with severe DIPJ OA were submitted for RNA-sequencing; OA diagnosis was made from MRI T2 mapping, macroscopic and histological evaluation. Transfection of equine chondrocytes (n=3) was performed using the Lipofectamine® RNAiMAX system with a negative control and a miR-92a mimic and inhibitor. qPCR was used to quantify target mRNA genes. RNA-seq showed two miRNAs (miR-16 and miR-92a) were significantly DE (p<0.05). Ingenuity Pathway Analysis (IPA) identified important downstream targets of miR-92a involved in the pathogenesis of osteoarthritis and so this miRNA was used to transfect equine chondrocytes from three donor horses diagnosed with OA. Transfection was successfully demonstrated by a 1000-20000 fold increase in miR-92a expression in the equine chondrocytes. There was a significant (p<0.05) increase in COMP, COL3A1 and Sox9 in the miR-92a mimic treatment and there was no difference in ADAMTS-5 expression between the miR-92 mimic and inhibitor treatment. RNA-seq demonstrated miR-92a was downregulated in severe OA synovial fluid samples which has not previously been reported in horses, however miR-92a is known to play a role in the pathogenesis of OA in other species. Over expression of miR-92a in equine chondrocytes led to significantly increased COMP and Sox9 expression, consistent with a chondrogenic phenotype which has been identified in human and murine chondrocytes


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 105 - 105
2 Jan 2024
Im G
Full Access

Extensive bone defects, caused by severe trauma or resection of large bone tumors, are difficult to treat. Regenerative medicine, including stem cell transplantation, may provide a novel solution for these intractable problems and improve the quality of life in affected patients. Adipose-derived stromal/stem cells (ASCs) have been extensively studied as cell sources for regenerative medicine due to their excellent proliferative capacity and the ability to obtain a large number of cells with minimal donor morbidity. However, the osteogenic potential of ASCs is lower than that of bone marrow-derived stromal/stem cells. To address this disadvantage, our group has employed various methods to enhance osteogenic differentiation of ASCs, including factors such as bone morphogenetic protein or Vitamin D, coculture with bone marrow stem cells, VEGF transfection, and gene transfer of Runx-2 and osterix. Recently, we mined a marker that can predict the osteogenic potential of ASC clones and also investigated the usefulness of the molecule as the enhancer of osteogenic differentiation of ASCs as well as its mechanism of action. Through RNA-seq gene analysis, we discovered that GSTT1 was the most distinguished gene marker between highly osteogenic and poorly osteogenic ASC clones. Knockdown of GSTT1 in high osteogenic ASCs by siGSTT1 treatment reduced mineralized matrix formation while GSTT1 overexpression by GSTT1 transfection or GSTT1 recombinant protein treatment enhanced osteogenic differentiation of low osteogenic ASCs. Metabolomic analysis confirmed significant changes of metabolites related to bone differentiation in ASCs transfected with GSTT1. A high total antioxidant capacity, low levels of cellular reactive oxygen species and increased GSH/GSSG ratios were also detected in GSTT1- transfected ASCs. GSTT1 can be a useful marker to screen the highly osteogenic ASC clones and also a therapeutic factor to enhance the osteogenic differentiation of poorly osteogenic ASC clones


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 13 - 13
1 Mar 2021
Gomez-Sierra M Lackington W Alini M Thompson K
Full Access

Although 80% of fractures typically heal without any problems, there is a small proportion (<20%) that suffer complications such as delayed healing and potential progression to non-union. In patients with healing complications, the coordinated regulation between pro- and anti-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-1 receptor antagonist (IL-1Ra) respectively, is often dysregulated. The aim of this study is to develop a therapeutic strategy based on the local delivery of genes to reparative mesenchymal stromal cells (MSCs) migrating into the local fracture microenvironment, thereby promoting a more favourable healing environment to enhance fracture repair. Our approach involves the local delivery of nanoparticles complexing the non-viral vector polyethyleneimine (PEI) with therapeutic plasmid DNA (pDNA) encoding for IL-1Ra. pDNA encoding green fluorescent protein and Gaussia luciferase were used as reporter genes to determine the transfection efficiency of both rat and human MSCs using flow cytometry and to assess the transgene expression profile using a luciferase expression assay. The effect of transfection with PEI on the viability of MSCs was assessed using the metabolic assay Cell Titer Blue and dsDNA quantification. Levels of IL-1Ra produced by cells following transfection with nanoparticles encoding IL-1Ra was assessed using enzyme-linked immunosorbent assays (ELISA). HEK-Blue IL-1β reporter cells, which secrete alkaline phosphatase in response to IL-1β stimulation, were used to confirm that the IL-1Ra produced by transfected cells is functionally active, i.e. the successful antagonism of IL-1β bioactivity. We have determined that using PEI-based nanoparticles we can achieve a transfection efficiency of 14.8 + 1.8% in rat MSCs. Transgene expression was found to be transient, with a peak in expression at 7 days post-transfection and a gradual decrease over time, which was maintained for up to 4 weeks. Using an optimized concentration of PEI, the impact of the nanoparticles on MSC viability was limited, with no significant difference in cellular metabolic activity compared to non-transfected cells at 10 days post-transfection. We have additionally demonstrated the capacity to successfully transfect both rat and human MSCs with pDNA encoding for IL-1Ra, resulting in enhanced levels of IL-1Ra, which is functionally active. The use of non-viral gene therapy to locally deliver immunomodulatory genes, such as IL-1Ra, to MSCs presents a promising strategy to enhance bone healing. Specifically, the transgene expression levels achieved with such an approach can remain therapeutically effective and are transient in nature, presenting an advantage over other methods such as recombinant protein delivery and viral-based gene delivery methodologies


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 74 - 74
2 Jan 2024
Peniche Silva C Dominguez R Bakht S Pardo A Joris V Gonçalves A Texeira S Balmayor E Gomes M van Griensven M
Full Access

Tendons and tendon-to-bone entheses don't usually regenerate after injury, and the hierarchical organization of such tissues makes them challenging sites of study for tissue engineers. In this study, we have tried a novel approach using miRNA and a bioactive bioink to stimulate the regeneration of the enthesis. microRNAs (miRNAs) are short, non-coding sequences of RNA that act as post-transcriptional regulators of gene and protein expression [1]. Mimics or inhibitors of specific miRNAs can be used to restore lost functions at the cell level or improve healing at the tissue level [2,3]. We characterized the healing of a rat patellar enthesis and found that miRNA-16-5p was upregulated in the fibrotic portion of the injured tissue 10 days after the injury. Based on the reported interactions of miRNA-16-5p with the TGF-β pathway via targeting of SMAD3, we aimed to explore the effects of miRNA-16-5p mimics on the tenogenic differentiation of adipose-derived stem cells (ASCs) encapsulated in a bioactive bioink [4,5]. Bioinks with different properties are used for the 3D printing of biomimetic constructs. By integrating cells, materials, and bioactive molecules it is possible to tailor the regenerative capacity of the ink to meet the particular requirements of the tissue to engineer [5]. Here we have encapsulated ASCs in a gelatin-methacryloyl (GelMa) bioink that incorporates miR-16-5p mimics and magnetically responsive microfibers (MRFs). When the bioink is crosslinked in the presence of a magnetic field, the MRFs align unidirectionally to create an anisotropic construct with the ability to promote the tenogenic differentiation of the encapsulated ASCs. Additionally, the obtained GelMA hydrogels retained the encapsulated miRNA probes, which permitted the effective 3D transfection of the ASC and therefore, the regulation of gene expression, allowing to investigate the effects of the miR-16-5p mimics on the tenogenic differentiation of the ASCs in a biomimetic scenario


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 113 - 113
4 Apr 2023
Qiu X Ding Y Huang D
Full Access

Intervertebral disc degeneration (IDD), the main cause of low back pain, is closely related to the inflammatory microenvironment in the nucleus pulposus (NP). Tumor necrosis factor-α (TNF-α) plays an important role in inflammation-related metabolic disturbance of NP cells. Melatonin has been proven to regulate the metabolism of NP cells, but whether it can protect NP cells from TNF-α-induced damage is still unclear. Therefore, this study aims to investigate the role and specific mechanism of melatonin on regulating the metabolism of NP cells in the inflammatory microenvironment. Human primary NP cells were treated with or without vehicle, TNF-α and melatonin. And the metabolic markers were also detected by western blotting and RT-qPCR. The activity of NF-κB signaling and Hippo/YAP signaling were assessed by western blotting and immunofluorescence. Membrane receptors inhibitors, pathway inhibitors, lentiviral infection, plasmids transfection and immunoprecipitation were used to explore the specific mechanism of melatonin. In vivo, the rat IDD model were constructed and melatonin was injected intraperitoneally to evaluate its therapeutical effect on IDD. We demonstrated that melatonin could alleviate the development of IDD in a rat model and reverse TNF-α–impaired metabolism of NP cells in vitro. Further investigation revealed that the protective effects of melatonin on NP cells mainly rely on MTNR1B, which subsequently activates Gαi2 protein. The activation of Gαi2 could upregulate the yes-associated protein (YAP) level, resulting in anabolic enhancement of NP cells. In addition, melatonin-mediated YAP upregulation increased the expression of IκBα and suppressed the TNF-α–induced activation of the NF-κB pathway, thereby inhibiting the catabolism of NP cells. Our results revealed that melatonin can reverse TNF-α–impaired metabolism of NP cells via the MTNR1B/Gαi2/YAP axis and suggested that melatonin can be used as a potential therapeutic drug in the treatment of IDD


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 87 - 87
2 Jan 2024
Moura S Olesen J Barbosa M Soe K Almeida M
Full Access

Osteoclasts (OCs) are multinucleated cells that play a pivotal role in skeletal development and bone remodeling. Abnormal activation of OCs contributes to the development of bone-related diseases, such as osteoporosis, bone metastasis and osteoarthritis. Restoring the normal function of OCs is crucial for bone homeostasis. Recently, RNA therapeutics emerged as a new field of research for osteoarticular diseases. The aim of this study is to use non-coding RNAs (ncRNAs) to molecularly engineer OCs and modulate their function. Specifically, we investigated the role of the microRNAs (namely miR-16) and long ncRNAs (namely DLEU1) in OCs differentiation and fusion. DLEU1/DLEU2 region, located at chromosome 13q14, also encodes miR-15 and miR-16. Our results show that levels of these ncRNA transcripts are differently expressed at distinct stages of the OCs differentiation. Specifically, silencing of DLEU1 by small interfering RNAs (siDLEU1) and overexpression of miR-16 by synthetic miRNA mimics (miR-16-mimics) led to a significant reduction in the number of OCs formed per field (OC/field), both at day 5 and 9 of the differentiation stage. Importantly, time-lapse analysis, used to track OCs behavior, revealed a significant decrease in fusion events after transfection with siDLEU1 or miR-16-mimics and an alteration in the fusion mode and partners. Next, we investigated the migration profile of these OCs, and the results show that only miR-16-mimics-OCs, but not siDLEU-OCs, have a lower percentage of immobile cells and an increase in cells with mobile regime, compared with controls. No differences in cell shape were found. Moreover, mass-spectrometry quantitative proteomic analysis revealed independent effects of siDLEU1 and miR-16-mimics at the protein levels. Importantly, DLEU1 and miR-16 act by distinct processes and pathways. Collectively, our findings support the ncRNAs DLEU1 and miR-16 as therapeutic targets to modulate early stages of OCs differentiation and, consequently, to impair OC fusion, advancing ncRNA-therapeutics for bone-related diseases. Acknowledgements: Authors would like to thank to AO CMF / AO Foundation (AOCMFS-21-23A). SRM and MIA are supported by FCT (SFRH/BD/147229/2019 and BiotechHealth Program; CEECINST/00091/2018/CP1500/CT0011, respectively)


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 294 - 294
1 Jul 2014
Williams R Salimi N Leeke G Bridson R Grover L
Full Access

Summary Statement. Calcium phosphate (CaP) particles have attracted great interest as transfection reagents, yet little is known about their mechanism of internalisation. We report live cell time-course tracking of CaP particles during internalisation and the influence of Ca:P ratio on transfection efficiency. Introduction. Relatively recent work has seen calcium phosphate (CaP) salts used for the delivery of biological materials into cells in the form of peptides, polymers and DNA sequences. Calcium phosphate salts have a critical safety advantage over other vectors such as viruses in that they pose no risk of pathogenicity due to mutation and show no apparent cytotoxicity. Previous work within the group showed that Ca:P ratio influenced the transfection efficiency, but the fate of the particles on internalisation is yet unknown. The difficulty in tracking the particles can be related to the visual similarity to granulation within the cells. Using a surface modification method that enables the fluorescent labeling of silicon-substituted hydroxyapatite (SiHA) particles, we have tracked the internalisation of the particles to understand their mechanism of entry and how particle composition may influence transfection efficiency. Patients & Methods. SiHA particles were synthesised by the dropwise addition of an aqueous solution of diammonium hydrogen phosphate and silicon tetraacetate to an aqueous solution of calcium nitrate while under mixing and maintained at pH10. The particles were functionalised with thiol groups using (3-mercaptopropyl)trimethoxysilane and dye-labelled with fluorescein-5-maleimide. MC3T3 osteoblast precursor cells were incubated in cell culture media containing labelled particles at a concentration of 0.6μg/mL for 12 hours. Confocal images were obtained with a Zeiss LSM 710 ConfoCor 3 system based around a Zeiss AxioObserverZ1 microscope. Results. DNA binding efficiency between 79 to 94%, the lowest being the CaP sample of new CaP route at Ca/P ratio of 0.33 by SEDS processing, which was 79% and the highest was the HAp SEDS processed sample at 40°C, solvent flowrate of 1 ml/min and antisolvent flowrate of 60 g/min (particle size of 131 nm). From the fluorescence microscopy images, localised regions of particles measuring around 500–1000nm were detected. With a typical SiHA particle size of 50–70nm in length, these regions contain 10's of particles. Discussion/Conclusion. Thiol functionalisation enabled the internalised SiHA to be visually discriminated from the other cellular material with similar morphology and optical contrast as shown in the bright field image. HA particles (Ca:P of 1.67) showed a strong affinity for the cell membrane despite extensive washing with PBS and their higher calcium content may enhance the binding of the DNA to the particle surface, therefore improving transfection efficiency


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 33 - 33
1 Apr 2018
Timur UT Emans P van Rhijn L Welting T
Full Access

Introduction. Cartilage homeoprotein 1 (CART-1) is a homeoprotein which has been suggested to play a role in chondrocyte differentiation and in skeletal development. It is expressed mainly in prechondrocytic mesenchymal condensations. Patients with mutations in the CART-1 gene display several craniofacial abnormalities, suggesting that CART-1 has a functional role in craniofacial skeletal development. However, its target genes and position in the established chondrogenic pathways is poorly documented. Given the fact that CART-1 is expressed predominantly in the chondrocyte lineage and its role in skeletal development, we hypothesized that CART-1 regulates expression of several pivotal genes involved in chondrogenic differentiation. Methods. The coding sequence of human CART-1 was custom synthesized with optimized codon usage and cloned into a p3XFLAG-CMV-7.1 expression vector. FLAG-CART-1 was transiently overexpressed in SW1353 cells by polyethyleneimine-mediated transfection (1,000 ng of plasmid/well in 12-well plates). FLAG-Empty vector was used as a negative control. FLAG-CART-1 overexpression was confirmed by means of anti-FLAG immunoblotting. To investigate a potential connection between CART-1 and established key chondrogenic pathways, TGFβ3 (10 ng/mL) was added to SW1353 cells in CART-1 overexpression cultures or their appropriate controls. Cells were harvested 48 hours after transfection and mRNA expression of several genes involved in chondrogenic differentiation was determined by qRT-PCR. Data represent three separate experiments performed in technical triplicate. Results. Overexpression of CART-1 was confirmed on protein level. CART-1 significantly upregulated the expression of hypertrophic markers MMP13 and COLX, while the expression of RUNX2, ALP and COL1 was significantly downregulated. The expression of COL2A1 and SOX9 was not altered in the presence of CART1. TGFβ3 significantly decreased MMP13 expression in SW1353 cultures, but induced the expression of COLX, RUNX2 and COL1. This TGFβ3 dependent behaviour was reversed when CART-1 was overexpressed in these cultures. Conclusion. Our results implicate a functional role for the homeodomain protein CART-1 in controlling the expression of several markers involved in chondrocyte differentiation and show important interactions with other signaling pathways involved in chondrogenic differentiation. Current efforts focus on further elucidating the connection between CART-1 and other chondrogenic pathways


Bone & Joint Research
Vol. 5, Issue 10 | Pages 523 - 530
1 Oct 2016
Yuan Y Zhang GQ Chai W Ni M Xu C Chen JY

Objectives. Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage. Materials and Methods. Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1. Results. MiR-138-5p was significantly increased in OA cartilage and in chondrocytes in response to IL-1β-stimulation. Overexpression of miR-138-5p significantly increased the IL-1β-induced downregulation of COL2A1, ACAN, and GAGs, and increased the IL-1β-induced over expression of MMP-13.We found that FOXC1 is directly regulated by miR-138-5p. Additionally, co-transfection with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 resulted in higher levels of COL2A1, ACAN, and GAGs, but lower levels of MMP-13. Conclusion. miR-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes, possibly by targeting FOXC1. Cite this article: Y. Yuan, G. Q. Zhang, W. Chai,M. Ni, C. Xu, J. Y. Chen. Silencing of microRNA-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes by targeting FOXC1: miR-138 promotes cartilage degradation. Bone Joint Res 2016;5:523–530. DOI: 10.1302/2046-3758.510.BJR-2016-0074.R2


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 291 - 291
1 Jul 2014
Ding Y Huang J Huang D Shen H
Full Access

Summary. RNAi targeting p110β reduces TNF-alpha production and osteolysis in response to wear particles. Introduction. Aseptic joint loosening is a key factor that reduces the life span of joint prosthesis. Prosthetic wear particles are thought to play a central role in the initiation and development of periprosthetic osteolysis, leading to aseptic loosening of prostheses. This study aims to explore the effect of p110β-targeted small interfering RNA (siRNA) and lentivirus on particle-induced inflammatory cytokine expression in murine macrophage. Methods. siRNA and lentivirus targeting p110β were transfected and infected prior to particle stimulation, respectively. Ceramic and titanium particles of different sizes were prepared to stimulate macrophages. Fluorescence microscopy showed that the siRNA transfection and lentivirus infection efficiency were 74.2 ± 4.2% and 92.3 ± 2.6%, respectively. Results. Real-time polymerase chain reaction (PCR) showed that the levels of tumor necrosis factor-alpha (TNF-alpha) mRNA in the particle stimulation plus RNA interference (RNAi) groups were significantly lower compared with the particle stimulation-only groups (P<0.05), respectively. Similarly, enzyme-linked immunosorbent assay (ELISA) showed that protein levels of TNF-alpha in RNAi-treated groups were significantly decreased after transfection or infection (P<0.05), respectively. Western Blot showed that Phospho-Akt activation was significantly reduced by RNAi. As assessed by CT and micro-CT, particle implantation induced a significant osteolysis effect in mice calvaria, which was limited by p110β-lentivirus addition. Conclusions. p110β subtype of PI3K, followed by activation of phosphor-AKT (Ser473), may possibly participate in the regulation of activating macrophages by wear particles, ultimately resulting in the secretion of TNF-α and osteolysis


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 107 - 107
1 Jul 2014
Minoda M Kawamoto T Akisue T Hara H Onishi Y Toda M Harada R Morishita M Ueha T
Full Access

Summary Statement. Survivin is a member of the inhibitor of apoptosis family, which may contribute to the progression of human MFH via inhibiting the mitochondrial apoptosis, and may be considered as a potent therapeutic target for the treatment of human MFH. Introduction. Survivin is a member of the inhibitor of apoptosis (IAP) family, which usually expresses in the embryonic lung and fetal organs in the developmental stages, but is undetectable in normal adult tissues other than thymus, placenta, CD34. +. stem cells, and basal colonic epitherial cells. However, several studies reported that survivin is highly expressed in various human malignancies, including sarcomas, and increased expression of survivin is an unfavorable prognostic marker correlating with decreased overall survival in cancer patients. We have previously reported that survivin was strongly expressed in human malignant fibrous histiocyoma (MFH), however, the roles of survivin in human MFH have not been studied. The aim of this study was to evaluate the effect of survivin inhibition on apoptotic activity in human MFH cells. Methods. Nara-H, a human MFH cell line which expresses the high levels of survivin, was used in this study. Cells were cultured in DMEM supplemented with 10% FBS and 1% penicillin/streptomycin at 37°C in a humidified atmosphere containing 5% CO. 2. To evaluate the effect of survivin inhibition on MFH cell apoptosis, cells were transfected with either a survivin specific siRNA (survivin-siRNA) or a non-specific control siRNA (control-siRNA) by lipofection method. After siRNA transfection, the efficiency of siRNA knockdown of survivin was assessed by quantitative real time PCR. Expressions of apoptosis-related proteins, such as caspase-3, caspase-9 and PARP, were assessed by immunoblot analysis, and the apoptotic activity was evaluated by flow cytometric analysis. Results. Transfection of survivin-siRNA strongly suppressed the expression of survivin compared with control-siRNA. Immunoblot analyses revealed that expressions of cleaved forms of caspase-3, caspase-9 and PARP were increased in survivin-siRNA transfected cells, while the expressions were barely detected in control cells. In flow cytometric analysis, the number of apoptotic cells was significantly increased in survivin-siRNA transfected cells compared with that in control cells. Discussion/Conclusion. Previous studies revealed that survivin regulates the mitochondrial apoptotic pathway, and that overexpression of survivin is associated with tumor growth, progression, and resistance to conventional targeted anticancer agents in various human malignancies. In the current study, we demonstrated that siRNA knockdown of survivin induced the cleavage of caspase-3, caspase-9 and PARP, and increased the apoptotic activity in human MFH cells. The findings in this study strongly suggest that survivin may contribute to the progression of human MFH via inhibiting the mitochondrial apoptosis in human MFH, and may be considered as a potent therapeutic target for the treatment of human MFH


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 127 - 127
1 Nov 2018
Schulze-Tanzil G Gögele C Schwarz S Hahn J Breier A Meyer M Schröpfer M Arnold P
Full Access

Cultured primary cells have a limited life span and undergo dedifferentiation. Tissue engineering (TE) approaches require high cell numbers, but availability of human derived cells is limited and animal cells show inter-species differences. The advantages of immortalized cells are delayed senescence and phenotypic stability. The present study was undertaken to validate key properties of immortalized human anterior cruciate ligament (ACL) fibroblasts in direct comparison with non-immortalized cells from the same donor to assess their applicability as TE model. Human ACL ligamentocytes (40 years old female donor) were either immortalized using repeated transient transfection with a simian virus SV40 plasmid or remained untreated. Both cell populations were analyzed for cell survival, DNA content, tendon marker, extracellular matrix (ECM) and cytoskeletal protein expression. Cell spheroids of both populations were seeded on scaffolds embroidered either from polylactic acid (PLA) threads alone or combined PLA- and PLA-co-caprolacton-(P(LA-CL)) threads, functionalized with fluor treatment and collagen foams. Cell survival on the scaffolds was monitored for up to 5 weeks. In contrast to non-immortalized ligamentocytes, immortalized cells reflected some chaotic and incomplete cell divisions, higher DNA content, numbers of dying cells and nucleoli, reduced vimentin and vinculin-associated focal adhesions. Analysed markers, other cytoskeletal and ECM components were similarly expressed. Compared to the non-immortalized ligamentocytes immortalized formed instable spheroids and died on the scaffolds after 21 d. Both cell populations reflected superior growth on the PLA-P(LA-CL) compared with PLA scaffolds. Immortalized cells share crucial properties with their non-immortalized counterparts, but TE is only possible for limited culturing periods


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 80 - 80
1 Apr 2018
Ripmeester EGJ Caron MMJ van Rhijn LW Welting TJM
Full Access

Introduction. During osteoarthritis (OA) progression the articular chondrocyte undergoes a phenotypic switch in which the chondrocyte acquires a catabolic and hypertrophy-like state. Bone morphogenetic protein (BMP)-7 is known for its anti-catabolic and pro-anabolic properties in cartilage repair and in OA chondrocytes. In its anabolic state the chondrocyte”s metabolism and protein synthesis are up-regulated. In order to meet a higher demand of protein synthesis, it is expected that the translational capacity of the chondrocyte is increased after exposure to BMP-7. The cellular availability of maturated ribosomal RNAs (rRNA) is rate-limiting in the assembly of ribosomes and previously it has been shown that BMP-7 treatment resulted in increased expression levels of bagpipe homeobox homolog 1 (BAPX-1/NKX3.2). We therefore hypothesize that BMP-7 enhances the translational capacity of articular chondrocytes via BAPX-1/NKX3.2-dependent synthesis of rRNAs. Methods. OA human articular chondrocytes (HACs) were isolated from OA cartilage from total knee arthroplasty. SW1353 cells and OA HACs were exposed to BMP-7 (1 nM) and expression levels of rRNAs (18S, 5.8S, 28S) rRNA processing snoRNAs (RMRP and U3), a crucial co-factor in rRNA transcription (UBF-1) and BAPX-1/NKX3.2 were determined by RT-qPCR (and immunoblotting for BAPX-1/NKX3.2). BAPX-1/NKX3.2 overexpression and knockdown were achieved via transfection of FLAG-BAPX-1/NKX3.2 or a BAPX-1/NKX3.2 siRNA. For ex vivo confirmation, human OA cartilage explants from total knee arthroplasty were exposed to BMP-7 (1 nM) and gene expression levels of rRNAs were measured via qPCR. Results. BMP-7 treatment resulted in increased 18S and 5.8S rRNA levels, increased UBF-1, RMRP and U3 expression. This correlated with increased BAPX-1/NKX3.2 mRNA and protein expression. Overexpression of BAPX-1/NKX3.2 resulted in increased rRNA expression levels and the reciprocal knockdown of BAPX-1/NKX3.2 resulted in decreased rRNA expression levels. Besides these in vitro data, exposure of OA cartilage explants to BMP-7 confirmed our in vitro data (increase of 18S, 5.8S, UBF-1, RMRP, U3 and BAPX-1 expression levels). Discussion/Conclusion. Here we show that BMP-7 induces increased cellular levels of maturated rRNAs, with concomitant induction of factors involved in the transcription and maturation of rRNAs. This process is directly influenced by BAPX-1/NKX3.2 in similar ways as BMP-7. In future research the transcriptional activity of the 47S pre-rRNA gene will be determined via a luciferase promoter reporter approach and increased translation will be directly determined via puromycilation assays. Our data provide important novel insights into the mechanism behind the anabolic properties of BMP-7 and may even provide a new molecular cue to target the chondrocyte phenotype in OA


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 337 - 337
1 Jul 2014
Onodera T Yamashita T Iwasaki N Sasazawa F
Full Access

Summary Statement. The deletion of gangliosides enhanced OA development by elevating MMP-13 and ADAMTS-5 expression and accelerating chondrocyte apoptosis. Gangliosides possibly play suppressive roles in IL-1α-induced inflammatory signaling cascades. Introduction. We have previously reported that glycosphingolipids (GSLs) play chondroprotective roles in the cartilage degradation process [1]. Gangliosides, one of the series of GSLs, are known to be important in intercellular signal transduction and cell-to-cell recognition [2]. Therefore, we hypothesised that gangliosides are important in cartilage metabolisms among the GSLs species. The purpose of this study was to determine the functional role of gangliosides in the development of OA in murine models. Materials & Methods. We adopted systemic GM3 synthase deficient mice (GM3S. −/−. ) which lack most of the gangliosides [3], and wild-type C57BL/6 mice as controls (WT). We applied instability-induced OA model (transecting the medial collateral ligament and removing the cranial half of the medial meniscus [4]) and age-associated OA model (following up to 15 months) with these mice. We also applied IL-1α-induced OA model with femoral head cartilage explants ex vivo. Histological evaluation and quantification of released proteoglycan (PG), secreted MMP-13, and NO in the cultured media were performed. In vitro experiments with chondrocytes extracted from articular cartilages of both genotypes (GM3S. −/−. , WT) were also performed to check the mRNA expression of cartilage degrading enzymes (MMP-13, ADAMTS-5). To test the functional roles of gangliosides, transient GM3S transfection was applied to WT chondrocytes and quantification of MMP-13 and ADAMTS-5 expression was performed. Results. Both age-associated and instability-induced OA models showed cartilage degradation in GM3S. −/−. mice were significantly more severe than WT mice. The results of IL-1α-induced OA model showed gangliosides deletion enhanced chondrocyte apoptosis and accelerated cartilage degradation. Femoral heads from GM3S. −/−. showed significantly higher concentration of MMP-13 and NO in the cultured media than those from WT. In vitro experiments revealed that ganglioside deletion enhanced MMP-13 and ADAMTS-5 expression in the chondrocytes stimulated with IL-1α. The expression of these enzymes was significantly suppressed by overexpressed GM3S in WT chondrocytes. Discussion/Conclusion. The deletion of gangliosides enhanced OA development by elevating MMP-13 and ADAMTS-5 expression and accelerating chondrocyte apoptosis. The results of this study raised the possibility that gangliosides, synthesised mainly from GM3, would play crucial roles in maintaining cartilage homeostasis among the GSLs species. Moreover, the result of overexpression experiment indicated that gangliosides play suppressive roles in IL-1α-triggered inflammatory signaling cascades. Although further studies are required to confirm our speculation, gangliosides may be the target molecules of a novel and effective strategy for the treatment of OA


Bone & Joint Research
Vol. 7, Issue 6 | Pages 414 - 421
1 Jun 2018
Yu CD Miao WH Zhang YY Zou MJ Yan XF

Objectives

The aim of this study was to investigate the role of miR-126 in the development of osteoarthritis, as well as the potential molecular mechanisms involved, in order to provide a theoretical basis for osteoarthritis treatment and a novel perspective for clinical therapy.

Methods

Human chondrocyte cell line CHON-001 was administrated by different doses of interleukin (IL)-1β to simulate inflammation. Cell viability, migration, apoptosis, IL-6, IL-8, and tumour necrosis factor (TNF)-α expression, as well as expression of apoptosis-related factors, were measured to assess inflammation. miR-126 expression was measured by quantitative polymerase chain reaction (qPCR). Cells were then transfected with miR-126 inhibitor to assess the effect of miR-126 on IL-1β-injured CHON-001 cells. Expression of B-cell lymphoma 2 (Bcl-2) and the activity of mitogen-activated protein kinase (MAPK) / Jun N-terminal kinase (JNK) signaling pathway were measured by Western blot to explore the underlying mechanism through which miR-126 affects IL-1β-induced inflammation.


Objectives

Adult mice lacking the transcription factor NFAT1 exhibit osteoarthritis (OA). The precise molecular mechanism for NFAT1 deficiency-induced osteoarthritic cartilage degradation remains to be clarified. This study aimed to investigate if NFAT1 protects articular cartilage (AC) against OA by directly regulating the transcription of specific catabolic and anabolic genes in articular chondrocytes.

Methods

Through a combined approach of gene expression analysis and web-based searching of NFAT1 binding sequences, 25 candidate target genes that displayed aberrant expression in Nfat1-/- AC at the initiation stage of OA, and possessed at least four NFAT1 binding sites in the promoter of each gene, were selected and tested for NFAT1 transcriptional activities by chromatin immunoprecipitation (ChIP) and promoter luciferase reporter assays using chondrocytes isolated from the AC of three- to four-month-old wild-type mice or Nfat1-/- mice with early OA phenotype.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 464 - 471
1 Aug 2017
Li QS Meng FY Zhao YH Jin CL Tian J Yi XJ

Objectives

This study aimed to investigate the functional effects of microRNA (miR)-214-5p on osteoblastic cells, which might provide a potential role of miR-214-5p in bone fracture healing.

Methods

Blood samples were obtained from patients with hand fracture or intra-articular calcaneal fracture and from healthy controls (HCs). Expression of miR-214-5p was monitored by qRT-PCR at day 7, 14 and 21 post-surgery. Mouse osteoblastic MC3T3-E1 cells were transfected with antisense oligonucleotides (ASO)-miR-214-5p, collagen type IV alpha 1 (COL4A1) vector or their controls; thereafter, cell viability, apoptotic rate, and the expression of collagen type I alpha 1 (COL1A1), type II collagen (COL-II), and type X collagen (COL-X) were determined. Luciferase reporter assay, qRT-PCR, and Western blot were performed to ascertain whether COL4A1 was a target of miR-214-5p.