Polysaccharide (alginate and chitosan) capsules coated with a unique self-assembled semi-crystalline shell of calcium phosphate provide an enclosed biological system for the spatial and temporal delivery of human cells and bioactive factors. The aim of this study was to demonstrate plasmid DNA entrapment, delivery and
Objectives. Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration. Methods. MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts. Results. MSCs from OVX rats migrate significantly (p < 0.05) less towards SDF-1 (9%, . sd. 5%) compared with MSCs from adult (15%, . sd. 3%) and young rats (25%, . sd. 4%). Cells transfected with CXCR4 migrated significantly more towards SDF-1 compared with non-transfected cells, irrespective of whether these cells were from OVX (26.5%, . sd. 4%), young (47%, . sd. 17%) or adult (21%, . sd. 4%) rats. Transfected MSCs differentiated to osteoblasts express CXCR4 but do not migrate towards SDF-1. Conclusions. MSC migration is impaired by age and osteoporosis in rats, and this may be associated with a significant reduction in bone formation in osteoporotic patients. The migration of stem cells can be ameliorated by upregulating CXCR4 levels which could possibly enhance fracture healing in osteoporotic patients. Cite this article: A. Sanghani-Kerai, M. Coathup, S. Samazideh, P. Kalia, L. Di Silvio, B. Idowu, G. Blunn. Osteoporosis and ageing affects the migration of stem cells and this is ameliorated by
Studies have demonstrated that use of peptides including bone morphogenetic proteins, fibroblast growth factors, insulin-like growth factor (IGF), and transforming growth factor-beta (TGF-beta), may be pivotal in promoting chondrogenesis and matrix development. As a prelude to studies, it is necessary to determine which gene or combination of genes gives the best result to improve proliferation of chondrocytes and synthesis of extracellar matrix. We investigate the effect of transfec-tion of recombined rat TGF-beta1 and recombined rat IGF-1 on rabbit chondrocytes ex vivo. Chondrocytes were isolated from articular cartilage of knee joint of mature New Zealand White rabbits. Cells were seeded at a density of 1×105 cells/ml into 6-well plates. Monolayer cultures were infected respectively with recombinant rat gene pcDNA3+TGF-beta 1, pAT153+IGF-1 and lac Z reporter gene by using lipo-fectamine, and were co-transfected by pcDNA3+TGF-beta 1, pAT153+IGF-1. The control group remained uninfected. To determine whether the genes transcript were translated and the gene products were released, the synthesis of TGF-beta 1, IGF-1,and type II collagen were measured by in situ hybridization, immunohisto-chemistry and immunofluoroscopy. The proliferation of chondrocytes was detected by flow cytometer and 3H-TdR radiolabeling. The expression of TGF-beta1,IGF-1 and type II collagen in recombinant rat gene
Our unpublished data has indicated that the perivascular stem cells (PSCs) have increased chondrogenic potential compared to mesenchymal stem cells (MSCs) derived in culture. There has been a recent change in the theory that stem cells work by a paracrine effect rather than differentiation. There are minimal data demonstrating the persistence of implanted stem cells when used for engraftment. This study aimed to develop an autologous large animal model for perivascular stem cells as well as to determine if cells were retained in the articular cartilage defects. The reactivity of anti-human and anti-ovine antibodies was ascertained using immunohistochemistry and fluorescence-activated cell sorting (FACS). A panel of antibodies were combined and used to identify and purify pericytes (CD34-CD45-CD146+) and adventitial cells (CD34+CD45-CD146-) using FACS. The purified cells were cultured and their identity checked using FACS. These cultured cells demonstrated osteogenic, adipogenic and chondrogenic potential. Autologous ovine PSCs (oPSCs) were isolated, cultured and transfected using a GFP virus. The
Bone morphogenetic proteins (BMPs) have been widely investigated for treating non-healing fractures. They participate in bone reconstruction by inducing osteoblast differentiation, and osteoid matrix production.1 The human recombinant protein of BMP-7 was among the first growth factors approved for clinical use. Despite achieving comparable results to autologous bone grafting, severe side effects have been associated with its use.2 Furthermore, BMP-7 was removed from the market.3 These complications are related to the high doses used (1.5-40 miligrams per surgery)2 compared to the physiological concentration of BMP in fracture healing (in the nanogram to picogram per milliliter range).4 In this study, we use transcript therapy to deliver chemically modified mRNA (cmRNA) encoding BMP-7. Compared to direct use of proteins, transcript therapy allows the sustained synthesis of proteins with native conformation and true post-translational modifications using doses comparable to the physiological ones.5 Moreover, cmRNA technology overcomes the safety and affordability limitations of standard gene therapy i.e. pDNA.6 BMP-7 cmRNA was delivered using Lipofectamine™ MessengerMAX™ to human mesenchymal stromal cells (hMSCs). We assessed protein expression and osteogenic capacity of hMSCs in monolayer culture and in a house-made, collagen hydroxyapatite scaffold. Using fluorescently-labelled cmRNA we observed an even distribution after loading complexes into the scaffold and a complete release after 3 days. For both monolayer and 3D culture, BMP-7 production peaked at 24 hours post-transfection, however cells transfected in scaffolds showed a sustained expression. BMP-7 transfected hMSCs yielded significantly higher ALP activity and Alizarin red staining at later timepoints compared to the untransfected group. Interestingly, BMP-7 cmRNA treatment triggered expression of osteogenic genes like OSX, RUNX-2 and OPN, which was also reflected in immunostainings. This work highlights the relevance of cmRNA technology that may overcome the shortcomings of protein delivery while circumventing issues of traditional pDNA-based gene therapy for bone regeneration.
We stably transfected early passage chondrocytes with an anti-apoptotic Bcl-2 gene We conclude that NO-induced chondrocyte death involves a mechanism which appears to be subject to regulation by an anti-apoptotic Bcl-2 gene. Therefore, Bcl-2 gene therapy may prove to be of therapeutic value in protecting human articular chondrocytes.
Aims. To explore the novel molecular mechanisms of histone deacetylase 4 (HDAC4) in chondrocytes via RNA sequencing (RNA-seq) analysis. Methods. Empty adenovirus (EP) and a HDAC4 overexpression adenovirus were transfected into cultured human chondrocytes. The cell survival rate was examined by real-time cell analysis (RTCA) and EdU and flow cytometry assays. Cell biofunction was detected by Western blotting. The expression profiles of messenger RNAs (mRNAs) in the EP and HDAC4
Osteoarthritis (OA) of the equine distal interphalangeal joint (DIPJ) is a common cause of lameness. MicroRNAs (miRNAs) from biofluids such as plasma and synovial fluid make promising biomarker and therapeutic candidates. The objectives of this study are (1) Identify differentially expressed (DE) miRNAs in mild and severe equine DIPJ OA synovial fluid samples and (2) Determine the effects of DE miRNAs on equine chondrocytes in monolayer culture. Synovial fluid samples from five horses with mild and twelve horses with severe DIPJ OA were submitted for RNA-sequencing; OA diagnosis was made from MRI T2 mapping, macroscopic and histological evaluation.
Aims. Osteoporosis is characterized by decreased trabecular bone volume, and microarchitectural deterioration in the medullary cavity. Interleukin-19 (IL-19), a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. The aim of our study was to investigate the effect of IL-19 on osteoporosis. Methods. Blood and femoral bone marrow suspension IL-19 levels were first measured in the lipopolysaccharide (LPS)-induced bone loss model. Small interfering RNA (siRNA) was applied to knock down IL-19 for further validation. Thereafter, osteoclast production was stimulated with IL-19 in combination with mouse macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The effect of IL-19 was subsequently evaluated using tartrate-resistant acid phosphatase (TRAP) staining and quantitative real-time polymerase chain reaction (RT-qPCR). The effect of IL-19 on osteoprotegerin (OPG) was then assessed using in vitro recombinant IL-19 treatment of primary osteoblasts and MLO-Y4 osteoblast cell line. Finally, transient
Extensive bone defects, caused by severe trauma or resection of large bone tumors, are difficult to treat. Regenerative medicine, including stem cell transplantation, may provide a novel solution for these intractable problems and improve the quality of life in affected patients. Adipose-derived stromal/stem cells (ASCs) have been extensively studied as cell sources for regenerative medicine due to their excellent proliferative capacity and the ability to obtain a large number of cells with minimal donor morbidity. However, the osteogenic potential of ASCs is lower than that of bone marrow-derived stromal/stem cells. To address this disadvantage, our group has employed various methods to enhance osteogenic differentiation of ASCs, including factors such as bone morphogenetic protein or Vitamin D, coculture with bone marrow stem cells, VEGF
Although 80% of fractures typically heal without any problems, there is a small proportion (<20%) that suffer complications such as delayed healing and potential progression to non-union. In patients with healing complications, the coordinated regulation between pro- and anti-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-1 receptor antagonist (IL-1Ra) respectively, is often dysregulated. The aim of this study is to develop a therapeutic strategy based on the local delivery of genes to reparative mesenchymal stromal cells (MSCs) migrating into the local fracture microenvironment, thereby promoting a more favourable healing environment to enhance fracture repair. Our approach involves the local delivery of nanoparticles complexing the non-viral vector polyethyleneimine (PEI) with therapeutic plasmid DNA (pDNA) encoding for IL-1Ra. pDNA encoding green fluorescent protein and Gaussia luciferase were used as reporter genes to determine the
Objectives. Previously, we reported the improved
Tendons and tendon-to-bone entheses don't usually regenerate after injury, and the hierarchical organization of such tissues makes them challenging sites of study for tissue engineers. In this study, we have tried a novel approach using miRNA and a bioactive bioink to stimulate the regeneration of the enthesis. microRNAs (miRNAs) are short, non-coding sequences of RNA that act as post-transcriptional regulators of gene and protein expression [1]. Mimics or inhibitors of specific miRNAs can be used to restore lost functions at the cell level or improve healing at the tissue level [2,3]. We characterized the healing of a rat patellar enthesis and found that miRNA-16-5p was upregulated in the fibrotic portion of the injured tissue 10 days after the injury. Based on the reported interactions of miRNA-16-5p with the TGF-β pathway via targeting of SMAD3, we aimed to explore the effects of miRNA-16-5p mimics on the tenogenic differentiation of adipose-derived stem cells (ASCs) encapsulated in a bioactive bioink [4,5]. Bioinks with different properties are used for the 3D printing of biomimetic constructs. By integrating cells, materials, and bioactive molecules it is possible to tailor the regenerative capacity of the ink to meet the particular requirements of the tissue to engineer [5]. Here we have encapsulated ASCs in a gelatin-methacryloyl (GelMa) bioink that incorporates miR-16-5p mimics and magnetically responsive microfibers (MRFs). When the bioink is crosslinked in the presence of a magnetic field, the MRFs align unidirectionally to create an anisotropic construct with the ability to promote the tenogenic differentiation of the encapsulated ASCs. Additionally, the obtained GelMA hydrogels retained the encapsulated miRNA probes, which permitted the effective 3D
Intervertebral disc degeneration (IDD), the main cause of low back pain, is closely related to the inflammatory microenvironment in the nucleus pulposus (NP). Tumor necrosis factor-α (TNF-α) plays an important role in inflammation-related metabolic disturbance of NP cells. Melatonin has been proven to regulate the metabolism of NP cells, but whether it can protect NP cells from TNF-α-induced damage is still unclear. Therefore, this study aims to investigate the role and specific mechanism of melatonin on regulating the metabolism of NP cells in the inflammatory microenvironment. Human primary NP cells were treated with or without vehicle, TNF-α and melatonin. And the metabolic markers were also detected by western blotting and RT-qPCR. The activity of NF-κB signaling and Hippo/YAP signaling were assessed by western blotting and immunofluorescence. Membrane receptors inhibitors, pathway inhibitors, lentiviral infection, plasmids
Osteoclasts (OCs) are multinucleated cells that play a pivotal role in skeletal development and bone remodeling. Abnormal activation of OCs contributes to the development of bone-related diseases, such as osteoporosis, bone metastasis and osteoarthritis. Restoring the normal function of OCs is crucial for bone homeostasis. Recently, RNA therapeutics emerged as a new field of research for osteoarticular diseases. The aim of this study is to use non-coding RNAs (ncRNAs) to molecularly engineer OCs and modulate their function. Specifically, we investigated the role of the microRNAs (namely miR-16) and long ncRNAs (namely DLEU1) in OCs differentiation and fusion. DLEU1/DLEU2 region, located at chromosome 13q14, also encodes miR-15 and miR-16. Our results show that levels of these ncRNA transcripts are differently expressed at distinct stages of the OCs differentiation. Specifically, silencing of DLEU1 by small interfering RNAs (siDLEU1) and overexpression of miR-16 by synthetic miRNA mimics (miR-16-mimics) led to a significant reduction in the number of OCs formed per field (OC/field), both at day 5 and 9 of the differentiation stage. Importantly, time-lapse analysis, used to track OCs behavior, revealed a significant decrease in fusion events after
Summary Statement. Calcium phosphate (CaP) particles have attracted great interest as
Aims. Kashin-Beck disease (KBD) is a kind of chronic osteochondropathy, thought to be caused by environmental risk factors such as T-2 toxin. However, the exact aetiology of KBD remains unclear. In this study, we explored the functional relevance and biological mechanism of cartilage oligosaccharide matrix protein (COMP) in the articular cartilage damage of KBD. Methods. The articular cartilage specimens were collected from five KBD patients and five control subjects for cell culture. The messenger RNA (mRNA) and protein expression levels were detected by quantitative reverse transcription PCR (qRT-PCR) and western blot. The survival rate of C28/I2 chondrocyte cell line was detected by MTT assay after T-2 toxin intervention. The cell viability and mRNA expression levels of apoptosis related genes between COMP-overexpression groups and control groups were examined after cell
Purpose: Vascular Endothelial Growth Factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy accelerates bone healing of a rabbit tibia segmental bone defect in-vivo, and increases osteoblast proliferation and mineralization in-vitro. The aim of this project was to examine the effect of exogenous human VEGF (hVEGF) on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Method: The osteoblasts were obtained from the rat periosteum. The fibroblasts were obtained from the rat dermal tissue. The cells were then cultured to reach 60% confluence and transfected with hVEGF using Superfect. Four groups were:. osteoblast-hVEGF,. fibroblast-hVEGF,. Osteoblasts alone, and. Fibroblasts only. The cultured cells were harvested at 1, 3 and 7 days after the
Introduction. Cartilage homeoprotein 1 (CART-1) is a homeoprotein which has been suggested to play a role in chondrocyte differentiation and in skeletal development. It is expressed mainly in prechondrocytic mesenchymal condensations. Patients with mutations in the CART-1 gene display several craniofacial abnormalities, suggesting that CART-1 has a functional role in craniofacial skeletal development. However, its target genes and position in the established chondrogenic pathways is poorly documented. Given the fact that CART-1 is expressed predominantly in the chondrocyte lineage and its role in skeletal development, we hypothesized that CART-1 regulates expression of several pivotal genes involved in chondrogenic differentiation. Methods. The coding sequence of human CART-1 was custom synthesized with optimized codon usage and cloned into a p3XFLAG-CMV-7.1 expression vector. FLAG-CART-1 was transiently overexpressed in SW1353 cells by polyethyleneimine-mediated