Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:

Aims. This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. Methods. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload. Results. Utilizing an OVX rat model, we observed significant alterations in bone mass and osseointegration due to VIT administration in aged rats with iron overload. The observed effects were concomitant with reductions in bone metabolism, oxidative stress, and inflammation. To elucidate whether these effects are associated with osteoclast and osteoblast activity, we conducted in vitro experiments using MC3T3-E1 cells and RAW264.7 cells. Our findings indicate that iron accumulation suppressed the activity of MC3T3-E1 while enhancing RAW264.7 function. Furthermore, iron overload significantly decreased oxidative stress levels; however, these detrimental effects can be mitigated by VIT treatment. Conclusion. Collectively, our data provide compelling evidence that VIT has the potential to reverse the deleterious consequences of iron overload on osseointegration and bone mass during ageing. Cite this article: Bone Joint Res 2024;13(9):427–440


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 284 - 284
1 Jul 2014
Meani E Fini M Giavaresi G Drago L Romanò C
Full Access

Summary Statement. An Implant Disposable Antibacterial Coating (i-DAC®) is described, consisting of a fully resorbable, biocompatible hydrogel, able to release antibacterial and antibiofilm agents. Direct application of the hydrogel on implants prevented infection occurrence in an in vitro model of peri-prosthetic infection. Introduction. Biofilm-related infections are among the main reasons for failure of joint prosthesis with high associated social and economical costs. Bacterial adhesion and subsequent biofilm formation have been shown to develop early after biomaterials implant into the human body, when a “race to the surface” takes place between the host's cells and the colonizing bacteria eventually present at the surgical site. Providing an antibacterial/antibiofilm coating of the implant may then play a strategic role in preventing biofilm related infections. Here we report the results of a series of in vitro and in vivo studies, partially performed under the European 7th Framework Programme (Implant Disposable Antibiotic Coating, IDAC, collaborative research project # 277988), concerning a fully resorbable, biocompatible antibacterial hydrogel coating (DAC®, Novagenit, Italy). The patented hydrogel, a co-polimer comprising of hyaluronic acid and a polylactic acid, has been designed to be mixed with various antibacterial agents and applied directly on the implant at the time of surgery, being fully resorbed within few days. Patients & Methods. The tested hydrogel (DAC®, Novagenit, Italy) is a derivative of a low molecular weight hyaluronan, grafted with poly-D, L-lactic acid and provided in powder form. At the point of care, the powder is hydrated with the antibiotic or antibiofilm solution, thus generating the final compound to be applied onto the implant surface. In vitro studies were conducted using DAC® coating on different biomaterials, including titanium, chrome-cobalt and polyethylene discs. The release of different antibacterial agents, including vancomycin, ciprofloxacin, meropenem, gentamycin, amikacin, tobramycin, clindamycin, doxycyclin, linezolid, NAsalycilate and N-acetylcisteine, adequately mixed with the hydrogel, has been tested by means of gas chromatography and microbiological methods. In vivo studies were then performed on 35 rabbits divided in 7 groups. Animals were implanted with an intramedullary titanium rod in their femur, with a known inoculum of methicillin-resistant Staph. aureus and vancomycin-loaded DAC® at different concentrations (2% and 5%) and compared with controls. Results. Regardless of the tested material, in vitro studies showed the ability of the hydrogel to be loaded and to sustain the release of the following antibacterial/antibiofilm compounds for up to 96 hours: vancomycin, ciprofloxacin, meropenem, gentamycin, amikacin, tobramycin, clindamycin, doxycyclin, linezolid, NAsalycilate, N-acetylcisteine. In vivo studies showed a bacterial load reduction ranging from 94% to 99.9% using vancomycin-loaded DAC®, compared to controls. Discussion/Conclusion. DAC®, a fast-resorbable antibacterial coating, showed the ability to be loaded with various antibacterial compounds and the ability to provide a highly significant reduction of bacterial colonization of implanted biomaterials in an animal model, opening a new pathway to local prevention and treatment of biofilm-/implant-related infections