Introduction. The combined incidence of anatomic (aTSA) and reverse total shoulder arthroplasties (rTSA) in the US is 90,000 per annum and rising. There has been little attention given to potential long-term complications due to periprosthetic tissue reactions to implant debris. The shoulder has been felt to be relatively immune to these complications due to lower acting loads compared to other joint arthroplasties. In this study, retrieved aTSAs and rTSAs were examined to determine the extent of implant damage and to characterize the nature of the corresponding periprosthetic
Wear and corrosion debris generated from total hip replacements (THR) can cause adverse local tissue reactions (ALTR) or osteolysis, often leading to premature implant failure. The
Introduction. Little is known about the relationship between head-neck corrosion and its effect on periprosthetic tissues and distant organs in the majority of patients hosting apparently well-functioning devices. We studied the degree and type of taper damage and the histopathologic response in periprosthetic tissue and distant organs. Methods. A total of 50 contemporary THRs (34 primary, 16 revision) retrieved postmortem from 40 patients after 0.4–26 years were studied. Forty-three femoral stems were CoCrMo and 7 were Ti6Al4V. In every case, a CoCrMo-alloy head articulated against a cementless polyethylene cup (19 XLPE and 31 UHMWPE). H&E and IHC sections of the joint pseudocapsules and liver were graded 1–4 for the intensity of various inflammatory cell infiltrates and tissue necrosis. The nature of the
A challenging problem in ultrasound based orthopaedic surgery is the identification and interpretation of bone surfaces. Recently we have proposed a new fully automatic ultrasound bone surface enhancement filter in the context of spine interventions. The method is based on the use of a Gradient Energy Tensor filter to construct a new feature enhancement metric, which we call the Local Phase Tensor. The goal of this study is to provide further improvements to the proposed filtering method by incorporating a-priori knowledge about the physics of ultrasound imaging and salient grouping of enhanced bone features. Typical ultrasound scan of the spine, there is a large soft tissue interface present close to the transducer surface with high intensity values similar to those of the bone anatomy response. Typical ultrasound image segmentation or enhancement methods will be affected by this thick soft
Introduction. Recent advances in nano-surface modification technologies are improving osseointegration response between implant materials and surrounding tissue. Living cells have been shown to sense and respond to cues on the nanoscale which in turn direct stem cell differentiation. One commercially practical surface treatment technique of particular promise is the modification of titanium implant surfaces via electrochemical anodization to form arrays of vertically aligned, laterally spaced titanium oxide (TiO2) nanotubes on areas of implants where enhanced implant–to-bone fixation is desired. Foundational work has demonstrated that the TiO2 nanotube surface architecture significantly accelerates osteoblast cell growth, improves bone-forming functionality, and even directs mesenchymal stem cell fate. The initial in vitro osteoblast cell response to such TiO2 nanotube surface treatments and corresponding in vivo rabbit
No, not my mother, but metal-on-metal (MoM) hips! My involvement in the DEFENSE side of MoM hips has allowed me the luxury of reflection and continued study on the basic and clinical science of this particular wear couple. Much of what I have learned is relevant to other articular couples, and might help you in your next THR. No amount of in vitro laboratory testing can replicate or predict in vivo behavior of a particular wear couple. (Mother Nature always has something new to teach us!) Although MoM implants went through complete pre-market evaluation and approval in both the US and EU, the process is inadequate and does not assure safety or success of new designs and materials. Two year results obtained in pre-market (IDE) studies are of insufficient follow-up for accurate evaluation of new materials or designs. Be conservative! Be neither the first, nor the last, to embrace new technology!. Clinical experience and retrieval analysis of MoM devices has revealed factors that are not as apparent for other wear couples such as metal-on-polyethylene (MoP), or ceramic-on-ceramic (CoC). For instance:. All THR's are at risk of micro-lateralization, or displacement of the femoral head from the acetabular wear couple during swing phase, resulting in edge loading. In addition, impingement or displacement related to component malposition or failure to balance the soft tissues about the hip can produce subluxation, producing edge loading and accelerated wear. In the case of MoM implants, the tribology and wear properties of MoM produce identifiable wear scars; all MoM designs appear to be subject to these phenomena. However, evidence now exists that both MoP and CoC wear couples are at similar risk for accelerated wear, although at different rates than MoM. Hard-on-hard wear couples (ceramic, metal) are less tolerant of edge loading than hard-on-soft (e.g., MoP or CoP) wear couples, and therefore require a higher degree of surgical precision in implant placement and reconstruction of the soft tissue balance of the hip. One of the previously unrecognised factors that can change relative implant position (and therefore, the risk of subluxation or edge loading) is the effect of the lumbar spine on apparent acetabular component position (e.g., changes between sitting, standing, or lying prone). This is largely due to the effect of lumbar spine flexibility, as shown in both orthogonal x-ray (“EOSr”) studies, and dynamic CAT scan studies. There is currently no validated algorithm or technique to assess these factors; however, surgeon awareness and at least clinical assessment preoperatively may result in better positioning of implants. Femoral component position can also have a major effect of the risk of impingement or subluxation of the femoral head; the combined anteversion concept of Dorr et al. should be rigorously adhered during THR. Other issues such as fretting corrosion associated with large diameter femoral heads and
Introduction. Successful tendon repairs are reliant on the suture material having high tensile strength, no or little
The STRYDE nail is an evolution of the PRECICE Intramedullary Limb Lengthening System, with unique features regarding its composition. It is designed for load bearing throughout treatment in order to improve patient experience and outcomes and allow for simultaneous bilateral lower limb lengthening. The literature published to date is limited regarding outcomes and potential problems. We report on our early experience and raise awareness for the potential of adverse effects from this device. This is a retrospective review of prospective data collected on all patients treated in our institution using this implant. We report the demographics, nail accuracy, reliability, consolidation index, and cases where concerning clinical and radiological findings were encountered. There were 14 STRYDE nails implanted in nine patients (three male and six female) between June 2019 and September 2020. Mean age at surgery was 33 years (14 to 65). Five patients underwent bilateral lengthening (two femoral and three tibial) and four patients unilateral femoral lengthening for multiple aetiologies.Aims
Methods
Summary. We report the first use of synchrotron xray spectroscopy to characterize and compare the chemical form and distribution of metals found in tissues surrounding patients with metal-on-metal hip replacements that failed with (Ultima hips) or without (current generation, large diameter hips) corrosion. Introduction. The commonest clinical category of failure of metal-on-metal (MOM) hip replacements is “unexplained” and commonly involved a soft