Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 133 - 133
1 May 2016
Wright S Gheduzzi S Miles A
Full Access

Introduction. Traditional applied loading of the knee joint in experimental testing of RTKR components is usually confined to replicating the tibiofemoral joint alone. The second joint in the knee, the patellofemoral joint, can experience forces of up to 9.7 times body weight during normal daily living activities (Schindler and Scott 2011). It follows that with such high forces being transferred, particularly in high flexion situations such as stair climbing, it may be important to also represent the patellofemoral joint in all knee component testing. This research aimed to assess the inclusion of the patellofemoral joint during in vitro testing of RTKR components by comparing tibial strain distribution in two experimental rigs. The first rig included the traditional tibiofemoral joint loading design. The second rig incorporated a combination of both joints to more accurately replicate physiological loading. Five implanted tibia specimens were tested on both rigs following the application of strain gauge rosettes to provide cortical strain data through the bone as an indication of the load transfer pattern. This investigation aimed to highlight the importance of the applied loading technique for pre-clinical testing and research of knee replacement components to guide future design and improve patient outcomes. Methods. Five composite tibias (4th Generation Sawbones) were prepared with strain gauge rosettes (HBM), correctly aligned and potted using guides for repeatability across specimens. The tibias were then implanted with Stryker Triathlon components according to surgical protocol. The first experimental rig was developed to replicate traditional knee loading conditions through the tibiofemoral joint in isolation. The second experimental rig produced an innovative method of replicating a combination of the tibiofemoral and patellofemoral joint loading scenarios. Both rigs were used to assess the load distribution through the tibia using the same tibia specimens and test parameters for comparison integrity (Figure 1). The cortical strains were recorded under an equivalent 500 N cyclical load applied at 10° of flexion by a hydraulic test machine. Results. The average results comparing both experimental rigs at three strain gauge locations are shown in Figure 2. Paired t-tests were performed on all results and a p value of p<0.05 was considered significant. No significant differences were found between the rigs. There was a trend towards a reduction in proximal principal strain with the inclusion of the patellofemoral joint (p=0.058). Discussion. The results of this study indicate that there is no significant difference in tibial load transfer between the traditional and novel applied loading techniques at small flexion angles. There is a trend towards a reduction in proximal strain when including the patellofemoral joint. This reduction may be linked to the patella tendon force counteracting the effect of tibiofemoral loading at this small flexion angle. At high flexion angles the patellofemoral reaction load increases significantly relative to the tibiofemoral load. This will have a significant effect on tibial strains and so it is recommended that testing at higher flexion angles should be performed in a combined loading rig