Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 20 - 20
17 Nov 2023
van Duren B France J Berber R Matar H James P Bloch B
Full Access

Abstract. Objective. Up to 20% of patients can remain dissatisfied following TKR. A proportion of TKRs will need early revision with aseptic loosening the most common. The ATTUNE TKR was introduced in 2011 as successor to its predicate design The PFC Sigma (DePuy Synthes, Warsaw, In). However, following reports of early failures of the tibial component there have been ongoing concerns of increased loosening rates with the ATTUNE TKR. In 2017 a redesigned tibial baseplate (S+) was introduced, which included cement pockets and an increased surface roughness to improve cement bonding. Given the concerns of early tibial loosening with the ATTUNE knee system, this study aimed to compare revision rates and those specific to aseptic loosening of the ATTUNE implant in comparison to an established predicate as well as other implant designs used in a high-volume arthroplasty centre. Methods. The Attune TKR was introduced to our unit in December 2011. Prior to this we routinely used a predicate design with an excellent long-term track record (PFC Sigma) which remains in use. In addition, other designs were available and used as per surgeon preference. Using a prospectively maintained database, we identified 10,202 patients who underwent primary cemented TKR at our institution between 01/04/2003–31/03/2022 with a minimum of 1 year follow-up (Mean 8.4years, range 1–20years): 1) 2406 with ATTUNE TKR (of which 557 were S+) 2) 4652 with PFC TKR 3) 3154 with other cemented designs. All implants were cemented using high viscosity cement. The primary outcome measures were all-cause revision, revision for aseptic loosening, and revision for tibial loosening. Kaplan-Meier survival analysis and Cox regression models were used to compare the primary outcomes between groups. Matched cohorts were selected from the ATTUNE subsets (original and S+) and PFC groups using the nearest neighbor method for radiographic analysis. Radiographs were assessed to compare the presence of radiolucent lines in the Attune S+, standard Attune, and PFC implants. Results. At a mean of 8.4 years follow-up, 308 implants underwent revision equating to 3.58 revisions per 1000 implant-years. The lowest risk of revision was noted in the ATTUNE cohort with 2.98 per 1000-implant-years where the PFC and All Other Implant groups were 3.15 and 4.4 respectively. Aseptic loosing was the most common cause for revision across all cemented implants with 76% (65/88) of involving loosening of the tibia. Survival analysis comparing the ATTUNE cohort to the PFC and All Other Cemented Implant cohorts showed no significant differences for: all-cause revision, aseptic loosening, or tibial loosening (p=0.15,0.77,0.47). Radiolucent lines were detected in 4.6%, 5.8%, and 5.0% of the ATTUNE S+, standard ATTUNE, and PFC groups respectively. These differences were not significant. Conclusion. This study represents the largest non-registry review of the original and S+ ATTUNE TKR in comparison to its predicate design as well as other cemented implants. There appears to be no significant increased revision rate for all-cause revision or aseptic loosening. Radiographic analysis also showed no significant difference in peri-implant radiolucency. It appears that concerns of early loosening may be unfounded. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 22 - 22
17 Nov 2023
van Duren B Firth A Berber R Matar H Bloch B
Full Access

Abstract. Objectives. Obesity is prevalent with nearly one third of the world's population being classified as obese. Total knee arthroplasty (TKA) is an effective treatment option for high BMI patients achieving similar outcomes to non-obese patients. However, increased rates of aseptic loosening in patients with a high BMI have been reported. In patients with high BMI/body mass there is an increase in strain placed on the implant fixation interfaces. As such component fixation is a potential concern when performing TKA in the obese patient. To address this concern the use of extended tibial stems in cemented implants or cementless fixation have been advocated. Extend tibial stems are thought to improve implant stability reducing the micromotion between interfaces and consequently the risk of aseptic loosening. Cementless implants, once biologic fixation is achieved, effectively integrate into bone eliminating an interface. This retrospective study compared the use of extended tibial stems and cementless implants to conventional cemented implants in high BMI patients. Methods. From a prospectively maintained database of 3239 primary Attune TKA (Depuy, Warsaw, Indiana), obese patients (body mass index (BMI) >30 kg/m²) were retrospectively reviewed. Two groups of patients 1) using a tibial stem extension [n=162] and 2) cementless fixation [n=163] were compared to 3) a control group (n=1426) with a standard tibial stem cemented implant. All operations were performed by or under the direct supervision of specialist arthroplasty surgeons. Analysis compared the groups with respect to class I, II, and III (BMI >30kg/m², >35 kg/m², >40 kg/m²) obesity. The primary outcome measures were all-cause revision, revision for aseptic loosening, and revision for tibial loosening. Kaplan-Meier survival analysis and Cox regression models were used to compare the primary outcomes between groups. Where radiographic images at greater than 3 months post-operatively were available, radiographs were examined to compare the presence of peri-implant radiolucent lines. Results. The mean follow-up of 4.8, 3.4, and 2.5 years for cemented, stemmed, and cementless groups respectively. In total there were 34 all-cause revisions across all the groups with revision rates of 4.55, 5.50, and 0.00 per 1000-implant-years for cemented, stemmed, and cementless groups respectively. Survival Analysis did not show any significant differences between the three groups for all-all cause revision. There were 6 revisions for aseptic loosening (5 tibial and 1 femoral); all of which were in the standard cemented implant group. In contrast there were no revisions in the stemmed or cementless implant groups, however, this was not significant on survival analysis. Analysis looking at class I, II, and III obesity also did not show any significant differences in survival for all cause revision or aseptic loosening. Conclusion. This retrospective analysis showed that there were no revisions required for aseptic loosening when either a cemented stemmed or cementless implant were used in obese patients. These findings are in line with other studies showing that cementless fixation or extended stem implants are a reasonable option in obese patients who represent an increasing cohort of patients requiring TKR. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 3 - 3
1 Dec 2020
Grupp TM Schilling C Fritz B Reyna ALP Pfaff A Taunt C Mihalko WM
Full Access

Introduction. Beneath infection, instability and malalignment, aseptic tibial component loosening remains a major cause of failure in total knee arthroplasty (TKA) [1]. This emphasizes the need for stable primary and long-term secondary fixation of tibial baseplates. To evaluate the primary stability of cemented tibial baseplates, different pre-clinical test methods have been undergone: finite element analysis [2], static push-out [3,4] or dynamic compression-shear loading [5] until interface failure. However, these test conditions do not reflect the long-term endurance under in vivo loading modes, where the tibial baseplate is predominantly subjected to compression and shear forces in a cyclic profile [5,6]. To distinguish between design parameters the aim of our study was to develop suitable pre-clinical test methods to evaluate the endurance of the implant-cement-bone interface fixation for tibial baseplates under severe anterior (method I) and internal-external torsional (method II) shear test conditions. Materials & Methods. To create a clinically relevant cement penetration pattern a 4. th. generation composite bone model was customised with a cancellous core (12.5 PCF cellular rigid PU foam) to enable for high cycle endurance testing. VEGA System. ®. PS & Columbus. ®. CRA/PSA ZrN-multilayer coated tibial baseplates (2×12) were implanted in the customised bone model using Palacos. ®. R HV bone cement (Figure 1). An anterior compression-shear test (method II) was conducted at 2500 N for 10 million cycles and continued at 3000 N & 3500 N for each 1 million cycles (total: 12 million cycles) simulating post-cam engagement at 45° flexion. An internal-external torsional shear test (method II) was executed in an exaggeration of clinically relevant rotations [7,8] with ±17.2° for 1 million cycles at 3000 N tibio-femoral load in extension. After endurance testing either under anterior shear or internal-external torsion each tibial baseplate was mounted into a testing frame and maximum push-out strength was determined [3]. Results. The cement penetration depth and characteristic pattern were comparable to 3D-CT scans of 24 cemented human tibiae from a previous study [5]. From the final push-out testing, no statistical significant differences could be found for anterior compression-shear testing (method I) with VEGA System. ®. PS (2674 ± 754 N) and Columbus. ®. CRA/PSA (2177 ± 429 N) (p = 0.191), as well as internal-external torsional shear testing (method II) between VEGA System. ®. PS (2561 ± 519 N) and Columbus. ®. CRA/PSA (2825 ± 515 N) tibial baseplates (p = 0.399). Discussion. The newly developed methods allow the evaluation of the endurance behaviour of the implant-cement-bone interface fixation for tibial baseplates in comparison to clinically long-term established knee systems, based on a combination of a suitable artificial bone model and severe anterior and internal-external torsional high cycle shear test conditions


Bone & Joint Research
Vol. 8, Issue 3 | Pages 136 - 145
1 Mar 2019
Cerquiglini A Henckel J Hothi H Allen P Lewis J Eskelinen A Skinner J Hirschmann MT Hart AJ

Objectives

The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic.

Methods

We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs.