Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 96 - 96
1 Jan 2016
Vasarhelyi E Vijayashankar RS Lanting B Howard J Armstrong K Ganapathy S
Full Access

Introduction. Fast track arthroplasty regimens require preservation of motor power to perform early rehabilitation and ensure early discharge (1). Commonly performed nerve blocks like femoral and Sciatic nerve blocks results in motor weakness thereby interfering with early rehabilitation and may also predispose to patient falls (2, 3). Hence, targeting the terminal branches of the femoral and sciatic nerves around the knee joint under ultrasound is an attractive strategy. The nerve supply of interest for knee analgesia are the terminal branches of the femoral nerve, the genicular branches of the lateral cutaneous nerve of thigh, obturator and sciatic nerves (4). Methods. We modified the performance of the adductor canal block and combined it with US guided posterior pericapsular injection and lateral femoral cutaneous nerve block to provide analgesia around the knee joint. The femoral artery is first traced under the sartorius muscle until the origin of descending geniculate artery and the block is performed proximal to its origin. A needle is inserted in-plane between the Sartorius and rectus femoris above the fascia lata and 5 ml of 0.5% ropivacaine (LA) is injected to block the intermediate cutaneous nerve of thigh. The needle is then redirected to enter the fascia of Sartorius to deliver an additional 5ml of LA to cover the medial cutaneous nerve of thigh following which it is further advanced till the needle tip is seen to lie adjacent to the femoral artery under the Sartorius to perform the adductor canal block with an additional 15–20 ml of LA to cover nerve to vastus medialis, saphenous nerve and posterior division of the obturator nerve (Fig 1). The lateral cutaneous nerve of thigh is optionally blocked with 10 ml of LA near the anterior superior iliac spine between the origin of Sartorius and tensor fascia lata (Fig 2). The terminal branches of sciatic nerve to the knee joint is blocked by depositing 25 ml of local anesthetic solution between the popliteal artery and femur bone at the level of femoral epicondyles (Fig 3). Results. The initial experience of the block performed on 10 patients reveal the median (IQR) block duration is noted to be around 20 (±6.5) hours. The median (IQR) pain scores in the first 24 postoperative hours ranged from 0 (±0.5) to 3 (±2.5) at rest and 1.5 (±3.5) to 5.5 (±1) on movement. All patients were successfully mobilized on the morning of the first postoperative day. Conclusion. Motor sparing from the blocks while providing adequate analgesia can be achieved by selectively targeting the sensory innervation of the knee joint. Future comparative studies are needed to evaluate the performance of the block against other modes of analgesia for knee arthroplasty


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 7 - 7
1 Sep 2012
Papakonstantinou M Pan W Le Roux C Richardson M
Full Access

Shoulder girdles of 20 cadavers (68–94yrs) were harvested. The anterior (ACHA) and posterior circumflex humeral arteries (PCHA) were injected with ink and the extra and intraosseous courses of the dyed vasculature dissected through the soft tissues and bone to the osteotendinous junctions of the rotator cuff. The ink injection and bone dissection method was newly developed for the study. Rates of cross-over at the osteotendinous juntion were 75% in the supraspinatus, 67% in subscapularis, 33% in infraspinatus and 20% in teres minor. The supraspinatus and subscapularis insertions were vascularised by the arcuate artery, a branch of the ACHA. The insertions of the infraspinatus and teres minor were supplied by an unnamed terminal branch of the PCHA. The insertions of the rotator cuff receive an arterial supply across their OTJ's in 50% of cases. This may explain observed rates of AVN in comminuted proximal humeral fractures. The terminal branch of the PCHA supplying the infraspinatus and teres minor insertions was named the “Posterolateral Artery”. Finally, the new method employed for this study which allowed for direct visualisation of intraosseous vasculature, will enhance our understanding of skeletal vascular anatomy and have clinical applications in orthopaedic and reconstructive surgery


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 70 - 70
1 Apr 2019
Chimento G Patterson M Thomas L Bland K Nossaman B Vitter J
Full Access

Introduction. Regional anesthesia is commonly utilized to minimize postoperative pain, improve function, and allow earlier rehabilitation following Total Knee Arthroplasty (TKA). The adductor canal block (ACB) provides effective analgesia of the anterior knee. However, patients will often experience posterior pain not covered by the ACB requiring supplemental opioid medications. A technique involving infiltration of local anesthetic between the popliteal artery and capsule of knee (IPACK) targets the terminal branches of the sciatic nerve, providing an alternative for controlling posterior knee pain following TKA. Materials and Methods. IRB approval was obtained, a power analysis was performed, and all patients gave informed consent. Eligible patients were those scheduled for an elective unilateral, primary TKA, who were ≥ 18 years old, English speaking, American Society of Anesthesiologists physical status (ASA PS) classification I-III. Exclusion criteria included contraindication to regional anesthesia or peripheral nerve blocks, allergy to local anesthetics, allergy to nonsteroidal anti-inflammatory drugs (NSAIDs), chronic renal insufficiency with GFR < 60, chronic pain not related to the operative joint, chronic (> 3 month) opioid use, pre-existing peripheral neuropathy involving the operative limb, and body mass index (BMI) ≥ 40 kg/m. 2. . Patients were randomized into one of two treatment arms: Continuous ACB with IPACK (IPACK Group) block or Continuous ACB with sham subcutaneous saline injection (No IPACK Group). IPACK Group received single injection of 20 mL 0.25% Ropivacaine. Postoperatively, all patients received a standardized multimodal analgesic regimen. The study followed a double-blinded format. Only the anesthesiologist performing the block was aware of randomization status. Following surgery, a blinded medical assessor recorded cumulative opioid consumption, average and worst pain scores, and gait distance. Results. 72 people were enrolled in the study and three withdrew. There were 35 people in the IPACK group and 34 in the NO IPACK group. There was no difference demographically between the groups. In the Post Anesthesia Care Unit (PACU), the average (P=0.0122) and worst (P=0.0168) pain scores at rest were statistically lower in the IPACK group. There was no difference in the pain scores during physical therapy. (P=0.2080) There was no difference in opioid consumption in the PACU (P=0.7928), at 8 hours (P=0.2867), 16 hours (P=0.2387), 24 hours (P=0.7456), or 30 hours (P=0.8029). There was no difference in pain scores on POD 1 in the AM (P=0.4597) or PM (P=0.6273), nor was there any difference in walking distance (P=0.5197). There was also no difference in length of stay in the PACU (P=0.9426) or hospital (P=0.2141) between the two groups. Discussion/Conclusion. Overall, pain was well controlled between the two groups. The IPACK group had lower pain scores at rest in the PACU, but this may not be clinically significant. The routine use of the IPACK is not supported by the results of this study. There may be use of the IPACK block as a rescue block or in patients whom have contraindications to our standard multimodal treatment regimen, or in patients with chronic pain or opioid dependence


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 46 - 46
1 Dec 2016
Mozaffarian K Zemoodeh H Zarenezhad M Owji M
Full Access

In combined high median and ulnar nerve injury, transfer of extensor digiti minimi (EDM) and extensor carpi ulnaris (ECU) nerve branches to restore intrinsic hand function is previously described. A segment of nerve graft is required in this operation. The aim of this study was to evaluate the feasibility of using the sensory branch of radial nerve (SRN) as an “in situ vascular nerve bridge'” (IVNB) instead of sural nerve graft. Twenty fresh cadavers were dissected. In proximal forearm incision, the feasibility of transferring the EDM/ECU branches to the distal stump of transected SRN was evaluated. In distal forearm incision, the two distal branches of the SRN were transected near the radial styloid process to determine whether transfer of the proximal stumps of these branches to the motor branches of the median (MMN) and ulnar (MUN) nerves is possible. The number of axons in each nerve was determined. The size of the dissected nerves and their location demonstrate that tension free nerve coaptation is easily possible in both proximal and distal incisions. Utilisation of the SRN as an IVNB instead of the conventional sural nerve graft has some advantages. Firstly, the sural nerve graft is a single branch and could be sutured to either the MMN or MUN, whereas the SRN has two terminal branches and can address both of them. Secondly, the IVNB has live Schwann cells and may accelerate the regeneration. Finally, this IVNB does not require leg incision and could be performed under regional anesthesia. The SRN as an IVNB is a viable option which can be used instead of conventional nerve graft in some brachial plexus or high median and ulnar nerve injuries when restoration of intrinsic hand function by transfer of EDM/ECU branches is attempted


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 111 - 111
1 May 2016
Klinger C Dewar D Sculco P Lazaro L Ni A Thacher R Helfet D Lorich D
Full Access

Introduction. The vascular anatomy of the femoral head and neck has been previously reported, with the primary blood supply attributed to the deep branch of the Medial Femoral Circumflex Artery (MFCA). This understanding has led to development of improved techniques for surgical hip dislocation for multiple intra-capsular hip procedures including Hip Resurfacing Arthroplasty (HRA). However, there is a lack of information in the literature on quantitative analysis of the contributions of the Lateral Femoral Circumflex Artery (LFCA) to femoral head and neck. Additionally, there is a lack of detailed descriptions in the literature of the anatomic course of the LFCA from its origin to its terminal branches. Materials & Methods. Twelve fresh-frozen human pelvic cadaveric specimens were studied (mean age 54.3 years, range 28–69). One hip per specimen was randomly assigned as the experimental hip, with the contralateral used as a control. Bilateral vascular dissection was performed to cannulate the MFCA and LFCA. Specimens were assigned as either LFCA-experimental or MFCA-experimental. All specimens underwent a validated quantitative-MRI protocol: 2mm slice thickness with pre- and post- MRI contrast sequences (Gd-DTPA diluted with saline at 3:1). In the LFCA-experimental group 15ml of MRI contrast solution was injected into the LFCA cannula. In the MFCA-experimental group 15ml of contrast solution was injected into the MFCA cannula. On the control hip contrast solution was injected into both MFCA and LFCA cannulas, 15ml each (30ml total for the control hip). Following MRI, the MFCA and LFCA were injected with polyurethane compound mixed with barium sulfate (barium sulfate only present in either MFCA or LFCA on each hip). Once polymerization had occurred, hips underwent thin-slice CT scan to document the extra- and intra-capsular course of the LFCA and MFCA. Gross dissection was performed to visually assess all intra-capsular branches of both the MFCA and LFCA and assess for extravasation. Quantitative-MRI analysis was performed based on Region of Interest (ROI) assessment. Femoral heads were osteotomized at the level of the largest diameter proximal to the articular margin and perpendicular to the femoral neck, for placement of a 360° scale. Measurements using the 360° scale were recorded. For data processing, we used right-side equivalents and integrated our 360° data into the more commonly used imaginary clock face. Results. Quantitative analysis of contributions of the MFCA and LFCA are detailed (Table 1). Thin slice CT scan graphical analysis of the LFCA provided (Figure 1). Topographic 360° scale (and imaginary clock face) results are also detailed in a diagram (Figure 2). Discussion. This study provides the first comparative results for quantitative assessment of arterial contributions from both the MFCA and LFCA for the femoral head and neck. The MFCA is the dominant vessel for both the femoral head and neck, supplying 82% of the femoral head and 67% of the femoral neck. The LFCA plays its largest role in the inferoanterior femoral neck (with a 48% arterial contribution). This finding highlights the importance of protecting the LFCA in addition to the MFCA during intra-capsular hip procedures including Hip Resurfacing Arthroplasty