Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 20 - 20
1 Nov 2021
Gueorguiev B
Full Access

Nonunions occur in situations with interrupted fracture healing process and indicate conditions where the fracture has no potential to heal without further intervention. Per definition, no healing is detected nine months post operation and there is no visible progress of healing over the last three months. The classification of nonunions as hypertrophic, oligotrophic, atrophic and pseudoarthosis, as well as aseptic or septic, identifies mechanical and biological requirements for fracture healing that have not been met. The overall treatment strategy comprises identification and elimination of the problems. However, current clinical methods to determine the state of healing are based on highly subjective radiographic evaluation or clinical examination. A data collection telemetric system for objective continuous measurement of the load carried by a bridging smart implant was developed to assess the mechanical stability and monitor bone healing in complicated fracture situations. The first results from a clinical trial show that the system is capable to offer early warning of nonunions or poor fracture healing. Nonunions are often multifactorial in nature and not just related to a biomechanical problem. Their successful treatment requires consideration of both biological and mechanical aspects. Disturbed vascularity and stability are the most important factors. Infection could be another complicating factor resulting in unpredictable long-time treatment. New technologies for monitoring of fracture healing in addition to radiographic evaluation and clinical examination seem to be promising for early detection of nonunions


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 3 | Pages 445 - 449
1 Apr 2000
Rohlmann A Bergmann G Graichen F Weber U

Spines are often stabilised posteriorly by internal fixation and anteriorly by a bone graft. The effect of an autologous bone graft from the iliac crest on implant loads is unknown. We used an internal spinal fixation device with telemetry to measure implant loads for several body positions and activities in nine patients before and after anterior interbody fusion. With the body upright, implant loads were often higher after than before fusion using a bone graft. Distraction of the bridged region led to high implant loads in patients with a fractured vertebra and to marked changes in load in those with degenerative instability. Leaving the lower of the bridged intervertebral discs intact led to only small changes in fixator load after anterior interbody fusion. A bone graft alone does not guarantee a reduction of implant loads


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 102 - 102
1 Aug 2012
Taylor S Mahmood W Faroug R McCarthy I Wilson D
Full Access

Early diagnosis of delayed- and non-union tibial fractures is difficult, but treatment options are available if timely data are available. Direct correlation between implant forces and healing status is difficult during stance phase loading due to soft tissue forces. This ongoing study seeks to find a minimal set of strain gauge sites needed to determine healing at any of several fracture sites, using isometric loading suitable for routine clinical usage. A series of instrumented tibial nails are being used to help determine whether an alternative technology can replace or augment existing routine methods for assessment of fracture healing. In a prior study, a single strain gauge positioned close to the fracture site had produced mixed results. In the current study, a TRIGEN META NAIL, 10mm OD x 380mm long, was instrumented with 8 gauged sites spiraled down the nail at 34mm axial and 120deg angular separation (Gen1), and loaded in a Sawbone model in offset axial compression, 3 point bending and torque. In order to gain early clinical results, and in a design informed by the Gen1 data, a set of instrumented nails have been made for an ovine wireless telemetry study (Gen3a), shortly to commence, in which the tibial nail has been over-gauged enabling multiple d.o.f. measurements to be made during gait, torque, axial compression and 3 point bending; the latter protocols offering more controlled patient postures. This study is to be followed by a similar human study (Gen3) involving five subjects (12 gauges per nail). Meanwhile, a parallel biomechanical study involving six nails with 20 gauges each is also planned. In the Gen1 study, the strains diminished with distance from the fracture site and with out-of-plane sites during bending. During torque, however, the response was much more uniform for all strain sites. Significant increases in strains due to both loading regimes were seen in the fractured case vs. an intact bone. Preliminary conclusions are that strains measured due to applied torque may offer a more sensitive and fracture site-independent means of assessing healing than induced bending. We now aim to confirm these observations in animal and human studies


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 461 - 467
1 Mar 2010
Wik TS Østbyhaug PO Klaksvik J Aamodt A

The cortical strains on the femoral neck and proximal femur were measured before and after implantation of a resurfacing femoral component in 13 femurs from human cadavers. These were loaded into a hip simulator for single-leg stance and stair-climbing. After resurfacing, the mean tensile strain increased by 15% (95% confidence interval (CI) 6 to 24, p = 0.003) on the lateral femoral neck and the mean compressive strain increased by 11% (95% CI 5 to 17, p = 0.002) on the medial femoral neck during stimulation of single-leg stance. On the proximal femur the deformation pattern remained similar to that of the unoperated femurs.

The small increase of strains in the neck area alone would probably not be sufficient to cause fracture of the neck However, with patient-related and surgical factors these strain changes may contribute to the risk of early periprosthetic fracture.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 1 | Pages 117 - 119
1 Jan 2005
Chin T Sawamura S Shiba R Oyabu H Nagakura Y Nakagawa A

We have compared the energy expenditure during walking in three patients, aged between 51 and 55 years, with unilateral disarticulation of the hip when using the mechanical-controlled stance-phase control knee (Otto Bock 3R15) and the microprocessor-controlled pneumatic swing-phase control knee (Intelligent Prosthesis, IP). All had an endoskeletal hip disarticulation prosthesis with an Otto Bock 7E7 hip and a single-axis foot. The energy expenditure was measured when walking at speeds of 30, 50, and 70 m/min.

Two patients showed a decreased uptake of oxygen (energy expenditure per unit time, ml/kg/min) of between 10.3% and 39.6% when using the IP compared with the Otto Bock 3R15 at the same speeds. One did not show any significant difference in the uptake of oxygen at 30 m/min, but at 50 and 70 m/min, a decrease in uptake of between 10.5% and 11.6% was found when using the IP. The use of the IP decreased the energy expenditure of walking in these patients.