Aims. The direct anterior approach (DAA) for total hip arthroplasty (THA) has potential advantages over other approaches and is most commonly performed with the patient in the supine position. We describe a
The SPAIRE
The painful hip without obvious clinical or radiographic signs of complications is a well-known scenario for surgeons. The clinical tools we have access to currently lack a dynamic test for detecting early signs of motion between implant and bone. A new software, Sectra IMA, has a potential to facilitate diagnosis of early implant loosening by analysis of paired CT exams. In clinical practise the two scans are acquired by endpoint of a possible motion, “a provocation CT”, for example maximal external and internal rotation in a CT hip examination. 20 years of research by Olivecrona and Weidenhielm is the scientific background for the
The use of trabecular metal (TM.) shells supported by two TM augments in the footing
Mechanical failure due to dislocation, fracture and acetabular wear as well as persistence of infection are the main complications associated with the use of hip spacers in the treatment of periprosthetic joint infections (PJI). We have developed a novel, custom-made spacer as part of two-stage septic hip replacement and present the two- to five-year results after reimplantation. We prospectively examined a total of 73 patients over our study period in whom our new spacer
In-hospital length of stay (LOS) and discharge disposition following arthroplasty could act as surrogate measures for improvement in patient pathways, and have major cost saving implications for healthcare providers. With the ever-growing adoption of robotic technology in arthroplasty, we wished to evaluate its impact on LOS. The objectives of this study were to compare LOS and discharge disposition following robotic-arm assisted (RO THA) versus conventional
The objective of this study is to evaluate the effectiveness and safety of percutaneous tenotomy of the iliopsoas tendon with the aid of ultrasound in cadavers. An anatomical and descriptive study of the
The aim of this study was to analyze and compare clinical, radiological and mortality outcomes of patients who underwent cemented hip hemiarthroplasty for displaced neck of femur fractures using a SPAIRE
Aims. Femoral bone preparation using compaction
Aims. The aim of this modified Delphi process was to create a structured Revision Hip Complexity Classification (RHCC) which can be used as a tool to help direct multidisciplinary team (MDT) discussions of complex cases in local or regional revision networks. Methods. The RHCC was developed with the help of a steering group and an invitation through the British Hip Society (BHS) to members to apply, forming an expert panel of 35. We ran a mixed-method modified Delphi process (three rounds of questionnaires and one virtual meeting). Round 1 consisted of identifying the factors that govern the decision-making and complexities, with weighting given to factors considered most important by experts. Participants were asked to identify classification systems where relevant. Rounds 2 and 3 focused on grouping each factor into H1, H2, or H3, creating a hierarchy of complexity. This was followed by a virtual meeting in an attempt to achieve consensus on the factors which had not achieved consensus in preceding rounds. Results. The expert group achieved strong consensus in 32 out of 36 factors following the Delphi process. The RHCC used the existing Paprosky (acetabulum and femur), Unified Classification System, and American Society of Anesthesiologists (ASA) classification systems. Patients with ASA grade III/IV are recognized with a qualifier of an asterisk added to the final classification. The classification has good intraobserver and interobserver reliability with Kappa values of 0.88 to 0.92 and 0.77 to 0.85, respectively. Conclusion. The RHCC has been developed through a modified Delphi
Aims. Cementless acetabular components rely on press-fit fixation for initial stability. In certain cases, initial stability is more difficult to obtain (such as during revision). No current study evaluates how a surgeon’s impaction
Hip fractures are associated with poor outcomes and high mortality rates of 30%. The current gold standard to measure bone fragility is a Dual-Energy X-ray Absorptiometry (DEXA) scan measuring bone mineral density. Yet DEXA under-diagnoses bone fragility by 50% (1). To combat the burden of bone fragility, this experimental study combined ultrasound (US) with a sophisticated computational algorithm, namely full wave inversion (FWI), to evaluate femoral bone structure. The aims were to assess the association of bone structure between the proximal femoral diaphysis and femoral neck; secondly to evaluate whether transverse ultrasound could assess bone structure of the proximal femoral diaphysis. Bone structure of 19 ex vivo human femora was assessed by micro-CT analysis (mean age 88.11 years, male:female 13:6)(Nikon HMXST 225). Using ImageJ/BoneJ, three 10.2mm subsections of proximal diaphysis and femoral neck underwent analysis: the total bone volume fraction, cortical parameters (bone volume fraction, porosity, thickness) and trabecular parameters (porosity, thickness, spacing and connectivity). A unique US prototype was developed to analyse fifteen femoral diaphyseal subsections using two P4-1 transducers with a novel tomography sequence (Verasonics, Matlab ver R2019a, FWI TRUST protocol). Comparative quantitative analysis of US and Micro-CT measurements was assessed (Graphpad Prism 8.3.1). Micro-CT analysis of the proximal femoral diaphysis demonstrated low correlation to the femoral neck (Pearson r −0.54 to 0.55). US was able to capture cortical structure, though a wide limit of agreement seen when compared to micro-CT analysis (Bland-Altman range 36–59% difference). This novel US
In order to release the contracture band completely without damaging normal tissues (such as the sciatic nerve) in the surgical treatment of gluteal muscle contracture (GMC), we tried to display the relationship between normal tissue and contracture bands by magnetic resonance neurography (MRN) images, and to predesign a minimally invasive surgery based on the MRN images in advance. A total of 30 patients (60 hips) were included in this study. MRN scans of the pelvis were performed before surgery. The contracture band shape and external rotation angle (ERA) of the proximal femur were also analyzed. Then, the minimally invasive GMC releasing surgery was performed based on the images and measurements, and during the operation, incision lengths, surgery duration, intraoperative bleeding, and complications were recorded; the time of the first postoperative off-bed activity was also recorded. Furthermore, the patients’ clinical functions were evaluated by means of Hip Outcome Score (HOS) and Ye et al’s objective assessments, respectively.Aims
Methods
Periprosthetic fracture and implant loosening are two of the major reasons for revision surgery of cementless implants. Optimal implant fixation with minimal bone damage is challenging in this procedure. This pilot study investigates whether vibratory implant insertion is gentler compared to consecutive single blows for acetabular component implantation in a surrogate polyurethane (PU) model. Acetabular components (cups) were implanted into 1 mm nominal under-sized cavities in PU foams (15 and 30 per cubic foot (PCF)) using a vibratory implant insertion device and an automated impaction device for single blows. The impaction force, remaining polar gap, and lever-out moment were measured and compared between the impaction methods.Aims
Methods
Aims. The main aims were to identify risk factors predictive of a radiolucent line (RLL) around the acetabular component with an interface bioactive bone cement (IBBC)
Introduction. The direct anterior approach (DAA) for total hip arthroplasty (THA) has gained popularity in recent years. Potential advantages over other surgical approaches include less postoperative pain, fewer postoperative precautions, and quicker early recovery. It is most commonly performed in the supine position with traction tables or table mounted bone hooks to facilitate exposure. In this study, we describe a reproducible surgical
Executing an extended retinacular flap containing the blood supply for the femoral head, reduction osteotomy (FHO) can be performed, increasing the potential of correction of complex hip morphologies. The aim of this study was to analyse the safety of the procedure and report the clinical and radiographic results in skeletally mature patients with a minimum follow up of two years. Twelve symptomatic patients (12 hips) with a mean age of 17 years underwent FHO using surgical hip dislocation and an extended soft tissue flap. Radiographs and magnetic resonance imaging producing radial cuts (MRI) were obtained before surgery and radiographs after surgery to evaluate articular congruency, cartilage damage and morphologic parameters. Clinical functional evaluation was done using the Non-Arthritic Hip Score (NAHS), the Hip Outcome Score (HOS), and the modified Harris Hip Score (mHHS). After surgery, at the latest follow-up no symptomatic avascular necrosis was observed and all osteotomies healed without complications. Femoral head size index improved from 120 ± 10% to 100 ± 10% (p<0,05). Femoral head sphericity index improved from 71 ± 10% before surgery to 91 ± 7% after surgery (p<0,05). Femoral head extrusion index improved from 37 ± 17% to 5 ± 6% (p< 0,05). Twenty five percent of patients had an intact Shenton line before surgery. After surgery this percentage was 75% (p<0,05). The NAHS score improved from a mean of 41 ± 18 to 69 ± 9 points after surgery (p< 0,05). The HOS score improve from 56 ± 24 to 83 ± 17 points after surgery (p< 0,05) and the mHHS score improved from 46 ± 15 before surgery to 76 ± 13 points after surgery (p< 0,05). In this series, femoral head osteotomy could be considered as safe procedure with considerable potential to correct hip deformities and improve patients reported outcome measures (PROMS). Level of evidence - Level IV, therapeutic study Keywords - Femoral head osteotomy, Perthes disease, acetabular dysplasia, coxa plana
Aims. Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative pelvic radiographs to exclude excessive acetabular component malposition. However, their evaluation is often ambiguous in case of the tilted or rotated pelvic position. The purpose of this study was to develop the computational analysis to digitalize the acetabular component orientation regardless of the pelvic tilt or rotation. Methods. Intraoperative pelvic radiographs of 50 patients who underwent THA were collected retrospectively. The 3D pelvic bone model and the acetabular component were image-matched to the intraoperative pelvic radiograph. The radiological anteversion (RA) and radiological inclination (RI) of the acetabular component were calculated and those measurement errors from the postoperative CT data were compared relative to those of the 2D measurements. In addition, the intra- and interobserver differences of the image-matching analysis were evaluated. Results. Mean measurement errors of the image-matching analyses were significantly small (2.5° (SD 1.4°) and 0.1° (SD 0.9°) in the RA and RI, respectively) relative to those of the 2D measurements. Intra- and interobserver differences were similarly small from the clinical perspective. Conclusion. We have developed a computational analysis of acetabular component orientation using an image-matching
Aims. The aim of this study was to develop a novel computational model for estimating head/stem taper mechanics during different simulated assembly conditions. Methods. Finite element models of generic cobalt-chromium (CoCr) heads on a titanium stem taper were developed and driven using dynamic assembly loads collected from clinicians. To verify contact mechanics at the taper interface, comparisons of deformed microgroove characteristics (height and width of microgrooves) were made between model estimates with those measured from five retrieved implants. Additionally, these models were used to assess the role of assembly technique—one-hit versus three-hits—on the taper interlock mechanical behaviour. Results. The model compared well to deformed microgrooves from the retrieved implants, predicting changes in microgroove height (mean 1.1 μm (0.2 to 1.3)) and width (mean 7.5 μm (1.0 to 18.5)) within the range of measured changes in height (mean 1.4 μm (0.4 to 2.3); p = 0.109) and width (mean 12.0 μm (1.5 to 25.4); p = 0.470). Consistent with benchtop studies, our model found that increasing assembly load magnitude led to increased taper engagement, contact pressure, and permanent deformation of the stem taper microgrooves. Interestingly, our model found assemblies using three hits at low loads (4 kN) led to decreased taper engagement, contact pressures and microgroove deformations throughout the stem taper compared with tapers assembled with one hit at the same magnitude. Conclusion. These findings suggest additional assembly hits at low loads lead to inferior taper interlock strength compared with one firm hit, which may be influenced by loading rate or material strain hardening. These unique models can estimate microgroove deformations representative of real contact mechanics seen on retrievals, which will enable us to better understand how both surgeon assembly
The SPAIRE