Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 4 - 4
1 Apr 2018
Western L Logishetty K Morgan R Cobb J Auvinet E
Full Access

Background

Accurate implant orientation is associated with improved outcomes after artificial joint replacement. We investigated if a novel augmented-reality (AR) platform (with live feedback) could train novice surgeons to orientate an acetabular implant as effectively as conventional training (CT).

Methods

Twenty-four novice surgeons (pre-registration level medical students) voluntarily participated in this trial. Baseline demographics, data on exposure to hip arthroplasty, and baseline performance in orientating an acetabular implant to six patient-specific values on a phantom pelvis, were collected prior to training. Participants were randomised to a training session either using a novel AR headset platform or receiving one-on-one tuition from a hip surgeon (CT). After training, they were asked to perform the six orientation tasks again. The solid-angle error in degrees between the planned and achieved orientations was measured using a head-mounted navigation system.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 31 - 31
1 Dec 2020
Shah DS Taylan O Berger P Labey L Vandenneucker H Scheys L
Full Access

Orthopaedic training sessions, vital for surgeons to understand post-operative joint function, are primarily based on passive and subjective joint assessment. However, cadaveric knee simulators, commonly used in orthopaedic research,. 1. could potentially benefit surgical training by providing quantitative joint assessment for active functional motions. The integration of cadaveric simulators in orthopaedic training was explored with recipients of the European Knee Society Arthroplasty Travelling Fellowship visiting our institution in 2018 and 2019. The aim of the study was to introduce the fellows to the knee joint simulator to quantify the surgeon-specific impact of total knee arthroplasty (TKA) on the dynamic joint behaviour, thereby identifying potential correlations between surgical competence and post-operative biomechanical parameters. Eight fellows were assigned a fresh-frozen lower limb each to plan and perform posterior-stabilised TKA using MRI-based patient-specific instrumentation. Surgical competence was adjudged using the Objective Structured Assessment of Technical Skills (OSATS) adapted for TKA. 2. All fellows participated in the in vitro specimen testing on a validated knee simulator,. 3. which included motor tasks – passive flexion (0°-120°) and active squatting (35°-100°) – and varus-valgus laxity tests, in both the native and post-operative conditions. Tibiofemoral kinematics were recorded with an optical motion capture system and compared between native and post-operative conditions using a linear mixed model (p<0.05). The Pearson correlation test was used to assess the relationship between the OSATS scores for each surgeon and post-operative joint kinematics of the corresponding specimen (p<0.05). OSATS scores ranged from 79.6% to 100% (mean=93.1, SD=7.7). A negative correlation was observed between surgical competence and change in post-operative tibial kinematics over the entire range of motion during passive flexion – OSATS score vs. change in tibial abduction (r=−0.87; p=0.003), OSATS score vs. change in tibial rotation (r=−0.76; p=0.02). When compared to the native condition, post-operative tibial internal rotation was higher during passive flexion (p<0.05), but lower during squatting (p<0.033). Post-operative joint stiffness was greater in extension than in flexion, without any correlation with surgical competence. Although trained at different institutions, all fellows followed certain standard intraoperative guidelines during TKA, such as achieving neutral tibial abduction and avoiding internal tibial rotation,. 4. albeit at a static knee flexion angle. However, post-operative joint kinematics for dynamic motions revealed a strong correlation with surgical competence, i.e. kinematic variability over the range of passive flexion post-TKA was lower for more skilful surgeons. Moreover, actively loaded motions exhibited stark differences in post-operative kinematics as compared to those observed in passive motions. In vitro testing on the knee simulator also introduced the fellows to new quantitative parameters for post-operative joint assessment. In conclusion, the inclusion of cadaveric simulators replicating functional joint motions could help quantify training paradigms, thereby enhancing traditional orthopaedic training, as was also the unanimous opinion of all participating fellows in their positive feedback


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 7 | Pages 958 - 965
1 Jul 2008
Leong JJH Leff DR Das A Aggarwal R Reilly P Atkinson HDE Emery RJ Darzi AW

The aim of this study was to validate the use of three models of fracture fixation in the assessment of technical skills. We recruited 21 subjects (six experts, seven intermediates, and eight novices) to perform three procedures: application of a dynamic compression plate on a cadaver porcine model, insertion of an unreamed tibial intramedullary nail, and application of a forearm external fixator, both on synthetic bone models. The primary outcome measures were the Objective Structural Assessment of technical skills global rating scale on video recordings of the procedures which were scored by two independent expert observers, and the hand movements of the surgeons which were analysed using the Imperial College Surgical Assessment Device.

The video scores were significantly different for the three groups in all three procedures (p < 0.05), with excellent inter-rater reliability (α = 0.88). The novice and intermediate groups specifically were significantly different in their performance with dynamic compression plate and intramedullary nails (p < 0.05). Movement analysis distinguished between the three groups in the dynamic compression plate model, but a ceiling effect was demonstrated in the intramedullary nail and external fixator procedures, where intermediates and experts performed to comparable standards (p > 0.6). A total of 85% (18 of 21) of the subjects found the dynamic compression model and 57% (12 of 21) found all the models acceptable tools of assessment.

This study has validated a low-cost, high-fidelity porcine dynamic compression plate model using video rating scores for skills assessment and movement analysis. It has also demonstrated that Synbone models for the application of and intramedullary nail and an external fixator are less sensitive and should be improved for further assessment of surgical skills in trauma. The availability of valid objective tools of assessment of surgical skills allows further studies into improving methods of training.