Significant advances in perioperative pain management, such as multimodal periarticular injection, and subtler advances in surgical technique have resulted in improved postoperative experiences for patients with less pain, earlier rehabilitation, and shorter stays in hospital. Concurrently, and by applying the learnings from above, significant advances have been made in unicompartmental knee arthroplasty care pathways leading to safe programs for outpatient surgery. A natural extension of this process has been the exploration of outpatient total joint arthroplasty (TJA). There are some papers written on the topic, but not many. The papers are generally report that outpatient
The number of Americans over the age of 80 is increasing at a faster rate than that of the 65–80 population. The cohort age 85–94 years had the fastest rate of growth from 2000–2010. The number of Americans older than 95 years grew at approximately 26% during the same period. This rapid growth has been associated with an increasing incidence of osteoarthritis of the hip and knee in this population. This surge in the growth rate of the elderly population has coincided with an increasing demand for primary and revision total joint arthroplasty. Surgeons need to be prepared to perform safely and appropriately these procedures in this rapidly growing segment of the population. Surgeons need to be aware of the 1) clinical outcomes that can be expected when total joint procedures are performed in this group of patients; 2) the morbidity and mortality associated with the performance of these procedures; and 3) the relative cost effectiveness of these interventions. Clinical outcomes of
Total joint arthroplasty (TJA) is one of the most successful procedures in orthopaedics. Despite the excellent clinical and functional results, periprosthetic joint infection (PJI) following
Introduction. The use of narcotic medications to manage postoperative pain after
Titanium (Ti) alloy is the material of choice for the porous bone ingrowth materials for non-cemented total Joint arthroplasty. Recent studies have shown the importance of controlling the macro, micro, and nano surface topographies on the bone apposition surfaces of these implants. Historically, much attention has been given to the designs of macro fixation features (millimeter scale), and the design of micro fixation porosity (micrometer scale). More recently, the importance of the nano-surface texture (nanometer scale) is being recognised as an integral component of the design. Nano-textures are being enhanced during implant processes to optimise the bond between implant and bone. The ultra-hydrophilic nano-texture of an implant interacts with the corresponding nano-texture of the outer cell membranes to increase cell adhesion and differentiation. This speeds the osseointegration rate between Ti alloys, and the surrounding osteoblast tissues. Living cells sense and respond to surface texturing on the nanoscale which in turn direct stem cell and osteoblast differentiation. This has been recognised to improve the speed at which the implant interface bonds to bone with the end goal of ultimately allowing patients to weight bear on non-cemented arthroplasty implants sooner. One surface modification treatment technique of particular promise is nano-texturing via. electrochemical anodization to form arrays of vertically aligned, laterally spaced titanium dioxide (TiO2) nanotubes on titanium implant surfaces in areas where enhanced implant-to-bone fixation is desired. Bio-mimicking TiO2 nanotube arrays are superimposed onto existing porous surface micro-structures to further enhance the already known bone ingrowth properties of these porous structures. These nanotube arrays show an accelerated osseointegration. Foundational work has demonstrated that the TiO2 nanotube surface architecture significantly accelerates osteoblast cell growth, improves bone-forming functionality, and even directs mesenchymal stem cell fate. Current generation nano-surface modification technologies show improved osseointegration response between implant materials and surrounding tissue and also provide surfaces that resist microbial adhesion. Implant surfaces treated with and without TiO2 nanotubes were compared to grit blasted Ti controls in-vitro and in-vivo. The samples we evaluated after exposure to human mesenchymal stem cell (hMSC). Additionally, implants have been evaluated in multiple animal models with and without TiO2 nanotubes. The bones with implants were retrieved for mechanical testing and histology analysis. The average bond strength was significantly higher (150% to 600%, depending on the in-vivo animal model) for TiO2 nanotube implants compared to the non-treated Ti control implants. The histology confirms direct bonded growth of new bone onto the nanotubes with a significantly less trapped amorphous tissue at the implant-bone interface compared to the controls. Both in-vitro and in-vivo analysis indicates that TiO2 nano-texturing enhances the speed and proliferation of osseointegration. This surface treatment technique can be applied to non-porous or porous surfaces on
We live in an era where younger, fitter, more active patients are presenting with the symptoms and signs of degenerative joint disease and require total knee and total hip arthroplasty at a young age. At the same time, this population of patients is living longer and longer and is likely to create new and more complex failure modes for their implants. The ideal solution is a biological one, whereby we can either prevent joint degradation or catch it in its early stages and avoid further deterioration. There may also be advances along the way in terms of partial arthroplasty and focal resurfacing that will help us prevent the need for total joint arthroplasty. There are several tensions that need to be considered. Should we resurface / replace early, particularly now that we have access to navigation and robotics and can effectively customise the implants to the patient's anatomy and their gait pattern? This would allow good function at a young age. Or should we wait as long as possible and risk losing some function for the sake of preserving the first arthroplasty for the lifetime of the patient? There are some key issues that we still do not fully understand. The lack of true follow-up data beyond 20 or 30 years is worrying. The data available tends to be from expert centers, and always has a dramatic loss to follow-up rate. We worry about bearing surfaces and how those materials will behave over time but we really do not know the effect of chronic metal exposure over several decades, nor do we really understand what happens to bone as it becomes more and more osteopenic and fragile around implants. We have largely recorded but ignored stress shielding, whereas this may become a very significant issue as our patients get older, more fragile, more sarcopaenic and more neurologically challenged. All the fixation debates that we have grappled with, may yet come back to the fore. Can ingrowth lead to failure problems later on? Will more flexible surfaces and materials be required to fit in with the elasticity of bone? We have failed dramatically at translating the in vitro to the in vivo model. It seems that the in vitro model tells us when failure is going to occur but success in vitro does not predict success in vivo. We, therefore, cannot assume that long-term wear data from simulators will necessarily translate to the extreme situations in vivo where the loading is not always idealised, and can create adverse conditions. We must, therefore, consider further how to improve and enhance our interventions. There is no doubt that the avoidance of arthroplasty needs to be at the heart of our thinking but, ultimately, if arthroplasty is to be performed, it needs to be performed expertly and in such a way as to minimise later failure. It also, clearly, needs to be cost-effective. The next stage will no doubt involve close cooperation between surgeons, engineers and industry partners to identify individualised surgical targets, select an appropriate prosthesis to minimise soft-tissue strain and develop a reproducible method of achieving accurate implantation. An ideal outcome can only be achieved by an appropriately trained surgeon selecting the optimal prosthesis to implant in the correct position in the well-selected patient. In the longer term, our choice of implants and the way that they are inserted and fixed must take into account the evolving physiology of our patients, the nature of our devices and how to limit harm from them, and the long-term impact of the materials used which we sometimes still do not understand.
Surface coatings have been introduced to total joint orthopaedics over the past decades to enhance osseointegration between metal implants and bone. However, complications such as aseptic loosening and infection persist. Inadequate osseointegration remains a complication associated with implants that rely on osseointegration for proper function. This is particularly challenging with implants having relatively flat and small surface areas that have high shear loading, such as noncemented uni and total condylar knee tibial trays. Faster osseointegration can enhance recovery as a result of improved load distribution and a more stable bone-implant interface. Traditionally noncemented porous bone ingrowth coatings on knee, hip and shoulder implants are typically texturised by thermal plasma spray coating, sintered metal bead coatings, or 3-D additive manufactured structures that provide porous surface features having the rough texture with pore sizes on the order of 150 to 300 micrometers. These surfaces are often further chemically enhanced with hydroxyapatite (HA) deposition. This provides macro-mechanical (millimeter scale) and micro-mechanical (micrometer scale) bone remodeling into the implant surface. However, at the nanoscale and cellular level, these surfaces appear relatively smooth. More recent studies are showing the importance of controlling the macro, micro, and the nano (nanometer scale) surface topographies to enhance cell interaction. In vitro and in vivo research shows surfaces with nanoscale features in the metal substrate result in enhanced osseointegration, greater bone-implant contact area and pullout force, and potentially bactericidal. One surface modification treatment technique of particular promise is nano-texturing via electrochemical anodization to bio-mimicking TiO2 nanotube arrays that are superimposed onto existing porous surface microstructures to further enhance the already known bone ingrowth properties of these porous structures by superimposing onto the existing microstructure arrays of nanotubes approximately 100 nanometers in outside diameter and 300–500 nanometers in height. In an ovine model, 3-D printed Direct Metal Laser Deposition (DMLS) additive manufactured porous Ti-6Al-4V implant with and without TiO2 nanotube array nano-texturing were compared to similar sized implants with commercially available sintered beads with HA coating and additive manufactured cobalt chrome implants. The average bond strength was significantly higher (42%) when the implants were nano-texturised and similarly stronger (53%) compared to HA coated sintered bead implants. Histology confirms over 420% more direct bonded growth of new bone from 0.5mm to 1.0mm deep into the porosity on the implants when the same implants are nano-texturised. Nano-texturing also changes the surface of the implant to repel methicillin-resistant staphylococcus aureus (MRSA) in an in vivo rabbit model limiting biofilm formation on the porous surface compared with non-treated porous surfaces. Since nano-texturizing only modifies the nano-morphology of the surface and does not add antibiotics or other materials to the implant, these animal studies shows great promise that nano-texturizing the TiO2 coating may not only enhance osseointegration, but also repels bacteria from porous implant surfaces. As such, we believe nano-texturing of porous implants will be the next advancement in surface coating technology.
Perhaps the most significant developments in joint replacement surgery in the past decade have been in the area of multimodal peri-operative management reducing pain, nausea, and length of stay leading to outpatient joint replacement surgery with recovery at home. The surgical procedures included in the outpatient program have expanded from Partial Knee Arthroplasty to Primary TKA, Primary THA, and selected revision cases. Emerging data demonstrate safety, reduced cost, and reduced resources. Since 2011, we helped develop and implement an outpatient program as part of 76 participating physician-owned ambulatory facilities in 19 states − 19,415 joint replacements have been performed. The cohort included 6,146 TKA, 5,102 THA, 7,227 partial knee replacements, and 940 revisions and TSA. Patients had a mean age of 58 years and 50% of the patients were female; 97% of patients were discharged same day, the deep infection rate was 0.2%, and the readmission rate was 0.3%. The outpatient program centers on the patient needs, family engagement, essentials of home recovery, pre-operative education, efficient surgery, and a surgeon controlled environment with highly standardised care. This is a distinct shift in today's health care environment, which has seen the expansion of regulatory demands; focus on Electronic Health Records (EHR), and distractions from real discussions of demonstrated value creation. The future is bright for both ASC and hospital development of successful outpatient joint replacement program for patients and surgeons alike.
Refinement of surgical techniques, anesthesia protocols, and patient selection has facilitated this transformation to same day discharge for arthroplasty care, most notably Partial Knee Arthroplasty (PKA). The trend for early discharge has already happened for procedures formerly regarded as “inpatient” procedures such as upper extremity surgery, arthroscopy, ACL reconstruction, foot and ankle procedures, and rotator cuff repair. Our program began focused on PKA and has now expanded to primary TKA and THA, and select revision cases. Over the past few years we have performed 1,230 knee arthroplasty procedures with no readmissions for pain control. Average age and age range is identical to our inpatient cohort for our partial knee cases. Patient selection is based on medical screening criteria and insurance access. PKA is the ideal procedure to begin your transition to the outpatient space. We currently perform medial PKA, lateral PKA, and patellofemoral arthroplasty as an outpatient. The program centers on the patient, their family, home recovery, preoperative education, efficient surgery, and represents a shift in the paradigm of arthroplasty care. It can be highly beneficial to patients, surgeons, anesthesia, facility costs, and payors as arthroplasty procedures shift to the outpatient space. Perhaps the most significant developments in joint replacement surgery in the past decade have been in the area of multimodal pain management. This has reduced length of stay in the inpatient hospital environment opening the opportunity for cost savings and even outpatient joint replacement surgery for appropriately selected patients. The hallmark of this program is meticulous protocol execution. Preemptive pain control with oral anti-inflammatory agents, gabapentin, regional anesthetic blocks that preserve quad function for TKA (adductor canal block) and pericapsular long acting local anesthetics with the addition of injectable ketorolac and IV acetaminophen are key adjuncts. Over the past two years utilizing this type of program over 60% of our partial knee replacement patients are now returning home the day of surgery. Concerns over readmission are appropriate. The rates of complications and readmissions are less than our inpatient cohort in appropriately selected cases with a standardised care map. We believe this brings the best VALUE to the patients, surgeons, and the arthroplasty system.
Common reasons for higher-than-average cost for a total hip arthroplasty are prolonged patient hospitalisation, which can be caused by among other factors, bleeding complications. The incidence of perioperative anemia has direct costs (blood transfusions), but also numerous indirect costs such as longer hospital stays, poor performance in physical therapy, and the potential for blood-borne infection. The incidence of pre-operative anemia in patients undergoing total hip arthroplasty has been reported to be as high as 44%, while total peri-operative blood loss for total hip arthroplasty may average between 750 and 1,000 mL. Anemia negatively impacts length of stay, patient function during rehabilitation, and patient mortality. Transfusions carry well known risks, including infection and fatal anaphylaxis, which are important factors considering that the transfusion rate has been reported to be as high as 45% and that transfused patients receive, on average, two units of blood. Methods that have been described in the literature include pre-treatment with erythropoietin, pre-operative hemodilution with intra-operative blood salvage, surgical techniques such as gentle soft tissue handling and meticulous hemostasis, bipolar sealers, intravascular occlusion, hemostatic agents, and early removal of drains. Pharmacologic approaches include treatment with erythropoietin, iron and folate. Randomised trials have demonstrated reduction in the risk for transfusion in patients treated with erythropoietin. Several studies have established a once-weekly dosing schedule of 40,000 international units (300–600 IU/kg) to be effective, and synergism has been observed in patients treated in combination with iron (ferrous sulfate, 325 mg three times a day). Patients with hemoglobin values between 10 and 14 g/dL are most likely to benefit. Intra-operatively, antifibrinolytics such as tranexamic acid (10 mg/kg) given as a single dose pre-operatively has been shown to decrease blood loss and the transfusion rate. Hypotensive anesthesia also effectively decreases blood loss without impairing renal function, but is technically demanding. Post-operatively, re-infusion drains may reduce the need for transfusions in total hip and total knee arthroplasty, but cannot be used in cases of infection or malignancy. By minimising peri-operative bleeding and bleeding complications through pre-operative optimisation, intra-operative surgical techniques that minimise blood loss, and post-operative care, patient disposition can be streamlined and delays for patient discharge can be avoided.
The high and ever increasing cost of medical care worldwide has driven a trend toward new payment models. Event based models (such as bundled payment for surgical events) have shown a greater potential for care and cost improvement than population-based models (such as accountable care organizations). Since joint replacement is among the most frequent and costly surgical events in medicine, bundled payments for joint replacement episodes have been at the forefront of evolution from fee-for-service to value-based care models and episode-based healthcare reform in general. Our education as surgeons in medical school, residency, fellowship, and in continuing education has been almost entirely non-economic in focus. Yet, we surgeons are now evolving from being primarily responsive for our patients' medical care to being also responsible for all expenditures associated with our patients' care. Similarly, while the cost of our patients' care was not even available to us, every dollar of expenditure for a patient's episode of care is now available to us in some circumstances. For example, a typical primary joint replacement episode may cost $30,000 for a patient insured by Medicare in the US. A surgeon performing 400 joint replacements per year is therefore authorizing upwards of $12M a year in health care spending by making the decisions to perform reconstructive procedures on those patients. The risk for value-based surgical episodes of care can be born by various entities including hospital systems or the surgeons themselves. Recent evidence demonstrates that quality improves and cost decreases more rapidly when surgeons take primary responsibility and risk for episodes of care as compared to when a hospital system or third party takes primary responsibility and risk. Yet, as surgeons, our education in the field of medical economics, value-based episodes of care, and payment reform is only just beginning. The more we understand about the cost and value of the services that we order for our patients, the more leadership can provide as healthcare evolves. The current presentation will describe the specific cost of care for the primary joint replacement patient preliminary experience with accepting risk and responsibility for these patients. It is likely that our patients will be best served if we surgeons provide as much leadership as possible in their care, both medically and economically.
The United States is in the midst of an opioid epidemic, with the World Health Organization reporting that American's consume 99% of the world's supply of hydrocodone and 83% of the world's oxycodone. Additionally, pre-operative opioid use has been associated with worse clinical outcomes and higher rates of complications following total knee arthroplasty (TKA). This is especially important in the TKA population given that approximately 15% of patients are either dissatisfied or very dissatisfied at least one year after their TKA procedure. Given the concerning rise in opioid use the American Academy of Orthopaedic Surgeons (AAOS) has recently released an information statement with practice recommendations for combating this excessive and inappropriate opiate use. However, little is known regarding peri-operative opioid use for TKA patients. Therefore, the purpose of this study was to: 1) identify rates of opioid use prior to primary TKA, 2) evaluate post-operative trends in opioid use throughout the year following TKA and 3) identify risk factors for prolonged opioid use following TKA. Overall, 31% of TKA patients are prescribed opioids within 3-months prior to TKA; this percentage has increased over 9% during the years included in this study. Pre-operative opioid use was most predictive of increased refills of opioids following TKA, however, other intrinsic patient characteristics were also predictive of prolonged opioid use. These characteristics remained predictive after controlling for opioid user status. The increasing rates of opioid prescribing prior to TKA are concerning, especially given literature concluding opioids have minimal effect on pain or function in patients with osteoarthritis and pre-operative opioid use is associated with poor outcomes and more complications following TKA. This data provides an important baseline for opioid use trends following TKA that can be used for future comparison and identifies risk factors for prolonged use that will be helpful to prescribers as the AAOS works to decreased opioid use, misuse and abuse within the United States.
Despite the demonstrated success in revision total joint arthroplasties, the utilization of antibiotic-loaded bone cement in primary total joint arthroplasty remains controversial. Multiple studies have demonstrated several risks associated with the routine use of this technique including: allergic reactions, changing the mechanical properties of the cement, emergence of resistant bacterial strains, systemic toxicity, and the added cost. In addition, evidence shows a currently low rate of periprosthetic joint infections in primary total joint arthroplasty (around 1%) and the theoretical benefit of marginally reducing this rate by using antibiotic-cement may not necessarily justify the associated risks and the added cost. Moreover, most of the primary total hip and an increasing number of primary total knee arthroplasties are cementless, which further raises questions about the routine use of antibiotic-loaded bone cement in primary total joint arthroplasty.
Aim. Prosthetic joint infection (PJI) represents the second most frequent complication of total joint arthroplasty (TJA) with up to 20% of low-grade PJI treated as aseptic failure. Sensitive diagnostic criteria have been provided by EBJIS. However, to date there is no single test to reliably diagnose all PJIs. Studies of Mazzucco et al. and Fu et al. suggest that synovial fluid (SF) viscosity could be considered as an important marker for PJI. The primary aim of our study was to determine if SF viscosity is a more reliable diagnostic criterion of PJI than the SF cell count with differential (CCD), and the combined diagnostic value of SF viscosity and CCD. Method. We prospectively analysed the viscosity of SF samples obtained during
Canada is second only to the United States worldwide in the number of opioid prescriptions per capita. Despite this, little is known about prescription patterns for patients undergoing total joint arthroplasty (TJA). The purpose of this study was to detail preoperative opioid use patterns and investigate the effect it has on perioperative quality outcomes in patients undergoing elective total hip and total knee arthroplasty surgery (THA and TKA). The study cohort was constructed from hospital Discharge Abstract Data (DAD) and National Ambulatory Care Reporting System (NACRS) data, using Canadian Classification of Health Intervention codes to select all primary THA and TKA procedures from 2017-2020 in Nova Scotia. Opioid use was defined as any prescription filled at discharge as identified in the Nova Scotia Drug Information System (DIS). Emergency Department (ED) and Family Doctor (FD) visits for pain were ascertained from Physician Claims data. Multivariate logistic regression was used to test for associations controlling for confounders. Chi-squared statistics at 95% confidence level used to test for statistical significance. In total, 14,819
Aim. A large body of evidence is emerging to implicate that dysregulation of the gut microbiome (dysbiosis) increases the risk of surgical site infections. Gut dysbiosis is known to occur in patients with inflammatory bowel disease (IBD), allowing for translocation of bacteria across the inflamed and highly permeable intestinal mucosal wall. The null hypothesis was that IBD was not associated with increased risk of periprosthetic joint infection (PJI) after primary total hip and knee arthroplasty. Our aim was to investigate whether a prior diagnosis of IBD was associated with a higher risk of PJI following primary total hip and knee arthroplasty. Method. A matched cohort study was designed. Primary endpoint was the occurrence of PJI at 2-year. Secondary endpoints were aseptic revisions, as well as discharge to rehab facility, complications up to 30 days, and readmission up to 90 days after
Given the high prevalence of psychiatric illness in the total joint arthroplasty (TJA) population, relatively little is known about how these two conditions affect each other. Therefore, the purpose of this study is to evaluate the role of major psychiatric illness on patient specific outcomes after
Aim. Whether laminar airflow (LAF) in the operating room (OR) is effective for decreasing periprosthetic joint infection (PJI) following total joint arthroplasty (TJA) remains a clinically significant yet controversial issue. This study investigated the association between operating room ventilation systems and the risk of PJI in
Introduction. Cardiac events have been found to occur with increased frequency in total joint arthroplasty (TJA) patients >65 y/o without known coronary artery disease (CAD). Avoidance of readmissions for cardiac events is paramount with bundled payment programs. It has been thought that many of these patients may have undiagnosed CAD because of sedentary life styles brought on by chronic osteoarthritis. The purpose of this study is to assess with Coronary Computed Tomographic Angiography (CCTA) the prevalence and severity of CAD in patients >65 y/o for elective
Aim. While metagenomic (microbial DNA) sequencing technologies can detect the presence of microbes in a clinical sample, it is unknown whether this signal represents dead or live organisms. Metatranscriptomics (sequencing of RNA) offers the potential to detect transcriptionally “active” organisms within a microbial community, and map expressed genes to functional pathways of interest (e.g. antibiotic resistance). We used this approach to evaluate the utility of metatrancriptomics to diagnose PJI and predict antibiotic resistance. Method. In this prospective study, samples were collected from 20 patients undergoing revision