The aim of this study was to assess the effect
of injecting genetically engineered chondrocytes expressing transforming
growth factor beta 1 (TGF-β1) into the knees of patients with osteoarthritis.
We assessed the resultant function, pain and quality of life. A total of 54 patients (20 men, 34 women) who had a mean age
of 58 years (50 to 66) were blinded and randomised (1:1) to receive
a single injection of the active treatment or a placebo. We assessed
post-treatment function, pain severity, physical function, quality
of life and the incidence of treatment-associated adverse events. Patients
were followed at four, 12 and 24 weeks after injection. At final follow-up the treatment group had a significantly greater
improvement in the mean International Knee Documentation Committee
score than the placebo group (16 points; -18 to 49, This technique may result in improved clinical outcomes, with
the aim of slowing the degenerative process, leading to improvements
in pain and function. However, imaging and direct observational
studies are needed to verify cartilage regeneration. Nevertheless,
this study provided a sufficient basis to proceed to further clinical testing. Cite this article:
Abstract. Introduction. Synovitis impacts osteoarthritis symptomatology and progression. The transcription factors controlling synovial gene expression have not been described. This study analyses gene expression in synovium samples from 16 patients with osteoarthritis with 9 undergoing arthroscopic and 8 knee trauma surgery for non-arthritic pathologies. Methodology. Intra-operative synovial biopsies were immersed in RNAlater at 4oC before storage at -80oC. Total RNA was extracted using RNAeasy. After purification, RT-PCR and quality assessment, cDNA was applied to Affymetrix Clariom D microarray gene chips. Bioinformatics analyses were performed. Linear models were prepared in limma with gender and BMI factors incorporated sequentially for each pathology comparison, generating 12 models of probes differentially expressed at FDR p<0.05 and Bayes number, B>0. Data analysis of differently expressed genes utilized Ingenuity Pathway Analysis and Cytoscape with Cluego and Cytohubba plug-ins. Results. Amongst the 2084 genes with significantly differential expression (DEG), 135 had transcription regulator capabilities and 121 a nuclear location. IPA analysis of OATKR and arthroscopic tissue comparison DEG identified 12 nuclear transcription factors linked to 31 DEG whose encoded proteins located within cytoplasmic and cell membrane compartments. All 12 were significantly up-regulated and acting in pathways up-regulating transcription of DNA and RNA, cell survival and angiogenesis while down-regulating senescence and apoptosis. NFE2L2, integral to the
The aim of this study was to screen the entire genome for genetic markers associated with risk for anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) injury. Genome-wide association (GWA) analyses were performed using data from the Kaiser Permanente Research Board (KPRB) and the UK Biobank. ACL and PCL injury cases were identified based on electronic health records from KPRB and the UK Biobank. GWA analyses from both cohorts were tested for ACL and PCL injury using a logistic regression model adjusting for sex, height, weight, age at enrolment, and race/ethnicity using allele counts for single nucleotide polymorphisms (SNPs). The data from the two GWA studies were combined in a meta-analysis. Candidate genes previously reported to show an association with ACL injury in athletes were also tested for association from the meta-analysis data from the KPRB and the UK Biobank GWA studies.Aims
Methods