Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 229 - 229
1 Jul 2014
Nicolescu R Ouellette E Kam C Sawardeker P Clifford P Latta L
Full Access

Summary. When a TFCC tear is diagnosed, practitioners should maintain a high level of suspicion for the presence of a concomitant SL or LT ligament tear. Introduction. Disruption of the scapholunate (SL) or lunotriquetral (LT) ligament leads to dorsal and volar intercalated segment instability, respectively, while triangular fibrocartilage complex (TFCC) tears result in distal radioulnar joint (DRUJ) instability. Viegas et al. (1993) demonstrated that 56% of grossly visualised cadaveric wrists had one or more tears of a ligament or of the TFCC. The purpose of this investigation is to quantify the incidence, distribution, and correlation of SL, LT, and TFCC tears in a large group of cadaver wrists using magnetic resonance imaging (MRI). Additionally, statistical analysis was performed to predict. Methods. Spin density weighted, fat suppressed, and STIR MRI scans of the wrist were obtained in 48 fresh frozen cadaver arms using a 3 Tesla MRI scanner. The scans were scrutinised by one of us (PC) – a board certified musculoskeletal radiologist. The dorsal, volar, and membranous portions of the SL and LT ligaments were examined sequentially for the presence of a tear. Similarly, the central disk and radioulnar attachments of the TFCC were inspected for tears. Results. A ligament or the TFCC was labeled as torn if there was a complete tear, partial tear, or perforation of one or more of its components, but not if sole degenerative changes, thinning, or fraying of the fibers was observed. Four of the 48 images could not be interpreted due to unsatisfactory scans. The most prevalent injury was a TFCC tear, which was present in 28 (64%) of the 44 wrists examined. SL ligament tears were discovered in 20 (45%) of the wrists, and LT tears were present in 14 (32%) of the wrists. Moreover, 45% of the wrists examined had a TFCC tear and either a SL or LT ligament tear. Specifically, 50% of the 28 wrists with a TFCC tear had a concomitant LT tear, and 46% had a concomitant SL tear. Discussion. SL, LT, and TFCC tears were found in a substantial portion of the wrists examined. Moreover, the majority of wrists with a TFCC tear also had a SL or LT ligament tear. Viegas et al. found that 70% of wrists with a TFCC perforation also had a LT ligament tear. In our series, 71% had a TFCC tear, and 50% of those had a concomitant LT tear


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 35 - 35
1 Aug 2012
Smith T Drew B Toms A Jerosch-Herold C Chojnowski A
Full Access

Background and Objectives. Triangular fibrocartilaginous complex (TFCC) tears are common sources of ulna sided wrist pain and resultant functional disability. Diagnosis is based on history, clinical examination and radiological evidence of a TFCC central perforation or radial/ulna tear. The purpose of this study is therefore to evaluate the diagnostic accuracy of Magnetic Resonance Imaging (MRI) and Magnetic Resonance Arthrography (MRA) in the detection of TFCC injury in the adult population. Methods. Published and unpublished literature databases were systematically review independently by two researchers. Two-by-two tables were constructed to calculate the sensitivity and specificity of MRI or MRA investigations against arthroscopic outcomes. Pooled sensitivity and specificity values and summary Receiver Operating Characteristic curve (sROC) evaluations were performed. Methodological quality of each study was assessed using the QUADAS (Quality Assessment of Diagnostic Accuracy Studies) tool. Results. Twenty one studies were eligible, including 910 wrists. On meta-analysis, MRA was superior to MRI in the investigation of complete TFCC tears with a pooled sensitivity of 0.75 (95% Confidence Interval (CI): 0.70, 0.79) and specificity of 0.81 (95% CI: 0.76, 0.86), compared to MRAs 0.84 (95% CI: 0.79, 0.89), and 0.95 (95% CI: 0.92, 0.98) respectively. MRA and MRI performed at greater field strengths reported greater sensitivity and specificity findings. For 3.0 Tesla (T) MRI, the meta-analysis indicated a sensitivity of 0.86 (95% CI: 0.65, 0.97), and specificity of 1.00 (0.87, 1.00). In comparison, the pooled sensitivity for the 1.5T MRI assessment was 0.70 (95% CI: 0.64, 0.75) and specificity of 0.79 (95% CI: 0.72, 0.85). This trend was repeated for MRA where 3.0T MRA exhibited a sensitivity was 1.00 (95% CI: 0.79, 1.00) and specificity of 1.00 (95% CI: 0.82, 1.00), whilst pooled analysis 1.5T MRA demonstrated a sensitivity of 0.83 (95% CI: 0.78, 0.89) and specificity of 0.95 (95% CI: 0.91, 0.98). There was insufficient data to assess the diagnostic test accuracy of partial TFCC lesions. Conclusions. Given its acceptable diagnostic test accuracy, it is recommended that in cases where there are questions over the diagnosis and subsequent management of patients with ulna wrist pain, a MRA should be undertaken rather than MRI


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 272 - 272
1 Jul 2014
Elliott W Sawardeker P Kam C Ouellette A Latta L
Full Access

Summary. Increased lateral ulnotrochlear joint space due to improper sizing in radial head arthroplasty may result in medial collateral ligament laxity, leading to increased osteophytes and arthritis. Introduction. Radial head (RH) arthroplasty is a common response to comminuted RH fractures. Typical complications include improper sizing, leading to changes in joint kinematics. Evidence of these changes should be visible through fluoroscopic images of affected joints. The two examined changes in this study are the ulnar deviation from distal radial translation (DRT), and the widening of the lateral ulnotrochlear joint space (LUT). Methods. Eight fresh-frozen cadaver arms were used. Initial images were taken with the native RH intact. The Kocher approach exposed the radiocapitellar (RC) joint capsule, preserving all ligaments. The RH was excised and Integra Katalyst CoCr (Plainsboro, NJ) telescoping, bipolar, RH inserted. Images were taken with implant sizings: −2mm, 0mm, +2mm, and +4mm, (from native) using 1mm washers preventing implant bipolarity. AP fluoroscopic images of the elbow were taken at full extension. Joint spaces were measured using image analysis, normalised using known radio-opaque lengths. Four LUT measurements were made, two medially and two laterally, and normalised by measuring the RH implant diameter. Each set (medial and lateral) were averaged together and the resulting value used for all comparisons. Images of distal ulnar deviation at the wrist were taken with the wrist in supination, the hand rotated medially. Measurements were from the distal medial radial tip to the distal lateral ulnar tip. Images were normalised by placing a scalpel in the same plane as measurement. Results. DRT values were difference paired for each arm using the 0mm values as baselines. One-way ANOVA of the paired values resulted in significant DT with sizing increases (p<0.01). The quotient of DRT and sizing determined comparative impact with the LUT increase. LUT joint gap measurements were percentage paired, with natives as the baseline, and One-way ANOVA used. A significant increase in LUT spacing occurred with increased sizings (p<0.01). Discussion. Increased ulnar deviation can increase loading on the TFCC, leading to possible TFCC tear, increased articular cartilage wear from carpal misalignment, and eventual wrist instability and arthritis. The percentage of the radial lengthening is represented in DRT. Over-sizing results in small percentages of increased radial length at the wrist, therefore deviation at the elbow must take place, either through rotation of the ulna, or translation. Either of these can be seen through LUT measurements. Previous measurements of the LUT space were made by Frank (2009), with similar results. This was being used as a method of improper sizing detection using radiographs. The percentage difference of LUT space for corresponding sizing: there is an increase in LUT space for every sizing; maybe due to loosening of the soft tissue from arthroplasty. Increased LUT space indicates the medial translation of proximal ulna. This can result in Medial Collateral Ligament laxity, leading to increased osteophytes, and arthritis. Use and non-treatment, can create a chronic, painful, disorder