Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 229 - 229
1 Jul 2014
Nicolescu R Ouellette E Kam C Sawardeker P Clifford P Latta L
Full Access

Summary. When a TFCC tear is diagnosed, practitioners should maintain a high level of suspicion for the presence of a concomitant SL or LT ligament tear. Introduction. Disruption of the scapholunate (SL) or lunotriquetral (LT) ligament leads to dorsal and volar intercalated segment instability, respectively, while triangular fibrocartilage complex (TFCC) tears result in distal radioulnar joint (DRUJ) instability. Viegas et al. (1993) demonstrated that 56% of grossly visualised cadaveric wrists had one or more tears of a ligament or of the TFCC. The purpose of this investigation is to quantify the incidence, distribution, and correlation of SL, LT, and TFCC tears in a large group of cadaver wrists using magnetic resonance imaging (MRI). Additionally, statistical analysis was performed to predict. Methods. Spin density weighted, fat suppressed, and STIR MRI scans of the wrist were obtained in 48 fresh frozen cadaver arms using a 3 Tesla MRI scanner. The scans were scrutinised by one of us (PC) – a board certified musculoskeletal radiologist. The dorsal, volar, and membranous portions of the SL and LT ligaments were examined sequentially for the presence of a tear. Similarly, the central disk and radioulnar attachments of the TFCC were inspected for tears. Results. A ligament or the TFCC was labeled as torn if there was a complete tear, partial tear, or perforation of one or more of its components, but not if sole degenerative changes, thinning, or fraying of the fibers was observed. Four of the 48 images could not be interpreted due to unsatisfactory scans. The most prevalent injury was a TFCC tear, which was present in 28 (64%) of the 44 wrists examined. SL ligament tears were discovered in 20 (45%) of the wrists, and LT tears were present in 14 (32%) of the wrists. Moreover, 45% of the wrists examined had a TFCC tear and either a SL or LT ligament tear. Specifically, 50% of the 28 wrists with a TFCC tear had a concomitant LT tear, and 46% had a concomitant SL tear. Discussion. SL, LT, and TFCC tears were found in a substantial portion of the wrists examined. Moreover, the majority of wrists with a TFCC tear also had a SL or LT ligament tear. Viegas et al. found that 70% of wrists with a TFCC perforation also had a LT ligament tear. In our series, 71% had a TFCC tear, and 50% of those had a concomitant LT tear


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 35 - 35
1 Aug 2012
Smith T Drew B Toms A Jerosch-Herold C Chojnowski A
Full Access

Background and Objectives. Triangular fibrocartilaginous complex (TFCC) tears are common sources of ulna sided wrist pain and resultant functional disability. Diagnosis is based on history, clinical examination and radiological evidence of a TFCC central perforation or radial/ulna tear. The purpose of this study is therefore to evaluate the diagnostic accuracy of Magnetic Resonance Imaging (MRI) and Magnetic Resonance Arthrography (MRA) in the detection of TFCC injury in the adult population. Methods. Published and unpublished literature databases were systematically review independently by two researchers. Two-by-two tables were constructed to calculate the sensitivity and specificity of MRI or MRA investigations against arthroscopic outcomes. Pooled sensitivity and specificity values and summary Receiver Operating Characteristic curve (sROC) evaluations were performed. Methodological quality of each study was assessed using the QUADAS (Quality Assessment of Diagnostic Accuracy Studies) tool. Results. Twenty one studies were eligible, including 910 wrists. On meta-analysis, MRA was superior to MRI in the investigation of complete TFCC tears with a pooled sensitivity of 0.75 (95% Confidence Interval (CI): 0.70, 0.79) and specificity of 0.81 (95% CI: 0.76, 0.86), compared to MRAs 0.84 (95% CI: 0.79, 0.89), and 0.95 (95% CI: 0.92, 0.98) respectively. MRA and MRI performed at greater field strengths reported greater sensitivity and specificity findings. For 3.0 Tesla (T) MRI, the meta-analysis indicated a sensitivity of 0.86 (95% CI: 0.65, 0.97), and specificity of 1.00 (0.87, 1.00). In comparison, the pooled sensitivity for the 1.5T MRI assessment was 0.70 (95% CI: 0.64, 0.75) and specificity of 0.79 (95% CI: 0.72, 0.85). This trend was repeated for MRA where 3.0T MRA exhibited a sensitivity was 1.00 (95% CI: 0.79, 1.00) and specificity of 1.00 (95% CI: 0.82, 1.00), whilst pooled analysis 1.5T MRA demonstrated a sensitivity of 0.83 (95% CI: 0.78, 0.89) and specificity of 0.95 (95% CI: 0.91, 0.98). There was insufficient data to assess the diagnostic test accuracy of partial TFCC lesions. Conclusions. Given its acceptable diagnostic test accuracy, it is recommended that in cases where there are questions over the diagnosis and subsequent management of patients with ulna wrist pain, a MRA should be undertaken rather than MRI


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 7 | Pages 1062 - 1065
1 Sep 2002
Nishikawa S Toh S

There have been few descriptions of the site of attachment onto the triquetrum, the so-called meniscal homologue, of the triangular fibrocartilage complex (TFCC). We have investigated the sites of attachment onto the triquetrum of 87 TFCCs collected from embalmed cadavers. All TFCCs were smoothly attached to the triquetrum. In 79 (46 cases, 90%) they were attached to the triquetrum and fifth metacarpal bone, and in eight (5 cases, 10%) they were attached widely on the articular surface of the triquetrum. It is necessary to have accurate positional information about the normal triquetrum and TFCC in order to perform arthroscopy. The meniscal homologue attached to the triquetrum is smooth in almost all cases. In about 10% of joints the TFCC is attached to the lunotriquetral ligament, either partly or completely obscuring the articular surface of the triquetrum


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 271 - 271
1 Jul 2014
Elliott W Sawardeker P Kaimrajh D Kam C Milne E Ouellette A Latta L
Full Access

Summary. Consistent load distributions with over-sizing of radial head implants show minimal variance in interosseus ligament (IOL) and triangular-fibrocartilage complex (TFCC) tension, both of which are essential in distribution of load at the elbow. Introduction:Changes in loading distribution at the elbow have not been studied with radial head (RH) arthroplasty. Difficulty arises concerning distribution variability between loading methods and magnitudes, and with implant oversizing. Method. RC joint capsule were exposed using the Kocher approach in seven fresh-frozen cadaver Humeri. Specimens were loaded axially in an MTS machine with humeri at 90° and wrist neutral. The arms were cycled in load control between 13N–130N until steady-state was reached for each trial. After loading in neutral, the arms were rotated to 60° supination (60S) and 60° pronation (60P), the test repeated. The radial head was excised and Co-Cr implant inserted. Sizings 0mm, +2mm, +4mm were simulated using 2mm plastic spacers on the stem. A Tekscan pressure map transducer at RC recorded loading. The recorded Tekscan loads were organised according to sizing (native, 0mm, +2mm, +4mm) for each specimen. The max/min load values were recorded and the difference, ΔL was calculated. The Max and ΔL values from each sizing were percentage paired with the respective native value. The ΔL values were used to discern load distribution. A linear regression was done using the RC loading plotted against the applied load to visualise the change of load distribution with changing applied loads. Data was analyzed using one-way analysis of variance. Result. Max load values and percent pairings are shown (one-way Anova). There was a direct relationship between loading at the RC joint and sizing of the radial head implant. The loading increases with over-sizing of the RH implant. Implant RC loading differences (ΔL) were compared percent paired with native values, and as total values. One-way ANOVA comparisons can be seen showing a trend. A linear regression was done (RC v. Applied load) showing a linear relation between loading at the RC joint and sizing of the radial head implant for all forearm positions. Conclusion. Linear relation between RC and applied load shows consistent distribution at any load. Equivalence of ΔL values indicate consistent distribution with implant oversizing. Consistent load distributions with over-sizing show minimal variance in interosseus ligament (IOL) and triangular-fibrocartilage complex (TFCC) tension, both of which are essential in distribution of load at the elbow. The TFCC and IOL loading are both reliant on radius position in relation to the ulna. It can be inferred that with minimal change in IOL and TFCC loading, there is little radial translation resulting from additional RH length


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 272 - 272
1 Jul 2014
Elliott W Sawardeker P Kam C Ouellette A Latta L
Full Access

Summary. Increased lateral ulnotrochlear joint space due to improper sizing in radial head arthroplasty may result in medial collateral ligament laxity, leading to increased osteophytes and arthritis. Introduction. Radial head (RH) arthroplasty is a common response to comminuted RH fractures. Typical complications include improper sizing, leading to changes in joint kinematics. Evidence of these changes should be visible through fluoroscopic images of affected joints. The two examined changes in this study are the ulnar deviation from distal radial translation (DRT), and the widening of the lateral ulnotrochlear joint space (LUT). Methods. Eight fresh-frozen cadaver arms were used. Initial images were taken with the native RH intact. The Kocher approach exposed the radiocapitellar (RC) joint capsule, preserving all ligaments. The RH was excised and Integra Katalyst CoCr (Plainsboro, NJ) telescoping, bipolar, RH inserted. Images were taken with implant sizings: −2mm, 0mm, +2mm, and +4mm, (from native) using 1mm washers preventing implant bipolarity. AP fluoroscopic images of the elbow were taken at full extension. Joint spaces were measured using image analysis, normalised using known radio-opaque lengths. Four LUT measurements were made, two medially and two laterally, and normalised by measuring the RH implant diameter. Each set (medial and lateral) were averaged together and the resulting value used for all comparisons. Images of distal ulnar deviation at the wrist were taken with the wrist in supination, the hand rotated medially. Measurements were from the distal medial radial tip to the distal lateral ulnar tip. Images were normalised by placing a scalpel in the same plane as measurement. Results. DRT values were difference paired for each arm using the 0mm values as baselines. One-way ANOVA of the paired values resulted in significant DT with sizing increases (p<0.01). The quotient of DRT and sizing determined comparative impact with the LUT increase. LUT joint gap measurements were percentage paired, with natives as the baseline, and One-way ANOVA used. A significant increase in LUT spacing occurred with increased sizings (p<0.01). Discussion. Increased ulnar deviation can increase loading on the TFCC, leading to possible TFCC tear, increased articular cartilage wear from carpal misalignment, and eventual wrist instability and arthritis. The percentage of the radial lengthening is represented in DRT. Over-sizing results in small percentages of increased radial length at the wrist, therefore deviation at the elbow must take place, either through rotation of the ulna, or translation. Either of these can be seen through LUT measurements. Previous measurements of the LUT space were made by Frank (2009), with similar results. This was being used as a method of improper sizing detection using radiographs. The percentage difference of LUT space for corresponding sizing: there is an increase in LUT space for every sizing; maybe due to loosening of the soft tissue from arthroplasty. Increased LUT space indicates the medial translation of proximal ulna. This can result in Medial Collateral Ligament laxity, leading to increased osteophytes, and arthritis. Use and non-treatment, can create a chronic, painful, disorder


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1600 - 1605
1 Nov 2010
Rimington TR Edwards SG Lynch TS Pehlivanova MB

The purposes of this study were to define the range of laxity of the interosseous ligaments in cadaveric wrists and to determine whether this correlated with age, the morphology of the lunate, the scapholunate (SL) gap or the SL angle. We evaluated 83 fresh-frozen cadaveric wrists and recorded the SL gap and SL angle. Standard arthroscopy of the wrist was then performed and the grades of laxity of the scapholunate interosseous ligament (SLIL) and the lunotriquetral interosseous ligament (LTIL) and the morphology of the lunate were recorded. Arthroscopic evaluation of the SLIL revealed four (5%) grade I specimens, 28 (34%) grade II, 40 (48%) grade III and 11 (13%) grade IV. Evaluation of the LTIL showed 17 (20%) grade I specimens, 40 (48%) grade II, 28 (30%) grade III and one (1%) grade IV.

On both bivariate and multivariate analysis, the grade of both the SLIL and LTIL increased with age, but decreased with female gender. The grades of SLIL or LTIL did not correlate with the morphology of the lunate, the SL gap or the SL angle. The physiological range of laxity at the SL and lunotriquetral joints is wider than originally described. The intercarpal ligaments demonstrate an age-related progression of laxity of the SL and lunotriquetral joints. There is no correlation between the grades of laxity of the SLIL or LTIL and the morphology of the lunate, the SL gap or the SL grade. Based on our results, we believe that the Geissler classification has a role in describing intercarpal laxity, but if used alone it cannot adequately diagnose pathological instability.

We suggest a modified classification with a mechanism that may distinguish physiological laxity from pathological instability.