Advertisement for orthosearch.org.uk
Results 1 - 20 of 49
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 315 - 315
1 Jul 2014
Dhooge Y Wentink N Theelen L van Hemert W Senden R
Full Access

Summary. The ankle X-ray has moderate diagnostic power to identify syndesmotic instability, showing large sensitivity ranges between observers. Classification systems and radiographic measurements showed moderate to high interobserver agreement, with extended classifications performing worse. Introduction. There is no consensus regarding the diagnosis and treatment of ankle fractures with respect to syndesmotic injury. The diagnosis of syndesmotic injury is currently based on intraoperative findings. Surgical indication is mainly made by ankle X-ray assessment, by several classification systems and radiographic measurements. Misdiagnosis of the injury results in suboptimal treatment, which may lead to chronic complaints, like instability and osteoarthritis. This study investigates the diagnostic power and interobserver agreement of three classification methods and radiographic measures, currently used to assess X-ankles and to identify syndesmotic injury. Patients and Methods. Twenty patients (43.2 ± 15.3yrs) with an ankle fracture, indicated for surgery, were prospectively included. All patients received a preoperative ankle X-ray, which was assessed by several observers: two orthopaedic surgeons, one trauma surgeon and two radiologists. The ankle X-ray was assessed on syndesmotic injury/stability and presence of fractures (fibula, medial/tertius malleolus). Three classification systems were used: Weber, AO-Müller (short-version n=3 options; extended-version n=27 options), Lauge-Hansen (short-version n=5 options; extended-version n=17 options) and two radiographic measurements were done: tibiofibular overlap (TFO) and ratio medial clearspace/superior clear space (MCS/SCS). All observers were instructed about the assessments before the measurements. During surgery, a proper intraoperative description of the syndesmosis was noted. Agreement (%), Intraclass Correlation Coefficients (ICC) and Kappa were calculated to determine interobserver agreement. Kappa statistic was interpreted according to Landis and Koch. To test the diagnostic power of ankle X-rays to identify syndesmotic instability, sensitivity and specificity were calculated with intraoperative findings serving as golden standard. Results. Six of 20 ankles showed syndesmotic instability intraoperatively. An overall sensitivity of 43% (specificity: 78) was found for X-rays in identifying syndesmotic instability, showing a wide range in sensitivity between observers (17–83%), with radiologists performing better (range 50–83%) than surgeons (range: 17–33%). Overall, substantial to perfect interobserver agreement (range 70–100%) was found for all short classification systems, showing an average kappa ≥0.60. The agreement reduced for more extended classification systems. E.g. observer agreement for the AO-Muller classification with 3, 9 and 27 options was respectively 85% (kappa 0.66), 68% (kappa 0.57) and 55% (kappa 0.51). One observer deviated slightly from others in all classification assessments. Removing this observer resulted in excellent agreement for all classification systems (>90%). Radiographic measurements showed moderate to high interobserver agreement, with TFO performing best (avg. ICC 0.88). Discussion/Conclusion. In ankle fractures, a preoperative X-ray has low sensitivity in detecting syndesmotic instability, showing large sensitivity ranges between observers. Further study is needed to investigate the contribution of classification systems in determining the best treatment method for syndesmotic injury. Ankle X-ray assessment using the three classification systems and radiographic measures was consistent among observers. Disagreement between observers can be attributed to intrinsic differences among the systems (e.g. stepwise classification vs. single assessment). No preference for one specific classification was found, as all showed comparable interobserver agreement. However classification systems with few options are recommended, as the observer agreement reduced with more extending classifications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 22 - 22
1 Jul 2020
Wong M Buckley R Duffy P Korley R Martin R Harrison T Sanders DW Schneider P Wiens C
Full Access

The syndesmosis ligament complex stabilizes the distal tibiofibular joint, while allowing for the subtle fibular motion that is essential for ankle congruity. Flexible fixation with anatomic syndesmosis reduction results in substantial improvements in functional outcomes. New dynamic CT technology allows real-time imaging, as the ankle moves through a range of motion. The aim of this study was to determine if dynamic CT analysis is a feasible method for evaluating syndesmosis reduction and motion following static and flexible syndesmosis fixation.

This is a subgroup analysis of a larger multicenter randomized clinical trial, in which patients with AO 44-C injuries were randomized to either Tightrope (one knotless Tightrope, Group T) or screw fixation (two 3.5-mm cortical screws, Group S). Surgical techniques and rehabilitation were standardized. Bilateral ankle CT scans were performed at one year post-injury, while patients moved from maximal dorsiflexion (DF) to maximal plantar flexion (PF). Three measurements were taken at one cm proximal to the ankle joint line in maximal DF and maximal PF: anterior, midpoint, and posterior tibiofibular distances. T-tests compared Group T and Group S, and injured and uninjured ankles in each group.

Fifteen patients (six Group T [three male], nine Group S [eight male]) were included. There was no difference for mean age (T = 42.8 ± 14.1 years, S = 37 ± 12.6, P = 0.4) or time between injury and CT scan (T = 13 ± 1.8 months, S = 13.2 ± 1.8, P = 0.8). Of note in Group S, seven of nine patients had at least one broken screw and one additional patient had screws removed by the time of their dynamic CT. There was no significant difference between treatment groups for tibiofibular distance measurements in maximal PF or DF. Group T showed no significant difference between the injured and uninjured side for tibiofibular measurements in maximal PF and DF, suggesting anatomic reduction. For Group S, however, there was a significantly larger distance for all three measurements at maximal PF compared to the uninjured ankle (all P < 0 .05).

In all but one Group S patient, screws were broken or removed prior to their dynamic CT, allowing possible increased syndesmotic motion, similar to Group T. Despite this, dynamic CT analysis detected increased tibiofibular distance in Group S as ankles moved into maximal PF when compared with the uninjured ankle. Given the importance of anatomic syndesmosis reduction, dynamic ankle CT technology may provide valuable physiologic information warranting further investigation.


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1709 - 1716
1 Nov 2021
Sanders FRK Birnie MF Dingemans SA van den Bekerom MPJ Parkkinen M van Veen RN Goslings JC Schepers T

Aims. The aim of this study was to investigate whether on-demand removal (ODR) is noninferior to routine removal (RR) of syndesmotic screws regarding functional outcome. Methods. Adult patients (aged above 17 years) with traumatic syndesmotic injury, surgically treated within 14 days of trauma using one or two syndesmotic screws, were eligible (n = 490) for inclusion in this randomized controlled noninferiority trial. A total of 197 patients were randomized for either ODR (retaining the syndesmotic screw unless there were complaints warranting removal) or RR (screw removed at eight to 12 weeks after syndesmotic fixation), of whom 152 completed the study. The primary outcome was functional outcome at 12 months after screw placement, measured by the Olerud-Molander Ankle Score (OMAS). Results. There were 152 patients included in final analysis (RR = 73; ODR = 79). Of these, 59.2% were male (n = 90), and the mean age was 46.9 years (SD 14.6). Median OMAS at 12 months after syndesmotic fixation was 85 (interquartile range (IQR) 60 to 95) for RR and 80 (IQR 65 to 100) for ODR. The noninferiority test indicated that the observed effect size was significantly within the equivalent bounds of -10 and 10 scale points (p < 0.001) for both the intention-to-treat and per-protocol, meaning that ODR was not inferior to RR. There were significantly more complications in the RR group (12/73) than in the ODR group (1/79) (p = 0.007). Conclusion. ODR of the syndesmotic screw is not inferior to routine removal when it comes to functional outcome. Combined with the high complication rate of screw removal, this offers a strong argument to adopt on demand removal as standard practice of care after syndesmotic screw fixation. Cite this article: Bone Joint J 2021;103-B(11):1709–1716


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 68 - 75
1 Jan 2022
Harris NJ Nicholson G Pountos I

Aims. The ideal management of acute syndesmotic injuries in elite athletes is controversial. Among several treatment methods used to stabilize the syndesmosis and facilitate healing of the ligaments, the use of suture tape (InternalBrace) has previously been described. The purpose of this study was to analyze the functional outcome, including American Orthopaedic Foot & Ankle Society (AOFAS) scores, knee-to-wall measurements, and the time to return to play in days, of unstable syndesmotic injuries treated with the use of the InternalBrace in elite athletes. Methods. Data on a consecutive group of elite athletes who underwent isolated reconstruction of the anterior inferior tibiofibular ligament using the InternalBrace were collected prospectively. Our patient group consisted of 19 elite male athletes with a mean age of 24.5 years (17 to 52). Isolated injuries were seen in 12 patients while associated injuries were found in seven patients (fibular fracture, medial malleolus fracture, anterior talofibular ligament rupture, and posterior malleolus fracture). All patients had a minimum follow-up period of 17 months (mean 27 months (17 to 35)). Results. All patients returned to their pre-injury level of sports activities. One patient developed a delayed union of the medial malleolus. The mean return to play was 62 days (49 to 84) for isolated injuries, while the patients with concomitant injuries returned to play in a mean of 104 days (56 to 196). The AOFAS score returned to 100 postoperatively in all patients. Knee-to-wall measurements were the same as the contralateral side in 18 patients, while one patient lacked 2 cm compared to the contralateral side. Conclusion. This study suggests the use of the InternalBrace in the management of unstable syndesmotic injuries offers an alternative method of stabilization, with good short-term results, including early return to sports in elite athletes. Cite this article: Bone Joint J 2022;104-B(1):68–75


Bone & Joint Open
Vol. 4, Issue 12 | Pages 957 - 963
18 Dec 2023
van den Heuvel S Penning D Sanders F van Veen R Sosef N van Dijkman B Schepers T

Aims. The primary aim of this study was to present the mid-term follow-up of a multicentre randomized controlled trial (RCT) which compared the functional outcome following routine removal (RR) to the outcome following on-demand removal (ODR) of the syndesmotic screw (SS). Methods. All patients included in the ‘ROutine vs on DEmand removal Of the syndesmotic screw’ (RODEO) trial received the Olerud-Molander Ankle Score (OMAS), American Orthopaedic Foot and Ankle Hindfoot Score (AOFAS), Foot and Ankle Outcome Score (FAOS), and EuroQol five-dimension questionnaire (EQ-5D). Out of the 152 patients, 109 (71.7%) completed the mid-term follow-up questionnaire and were included in this study (53 treated with RR and 56 with ODR). Median follow-up was 50 months (interquartile range 43.0 to 56.0) since the initial surgical treatment of the acute syndesmotic injury. The primary outcome of this study consisted of the OMAS scores of the two groups. Results. The median OMAS score was 85.0 for patients treated with RR, and 90.0 for patients treated with ODR (p = 0.384), indicating no significant difference between ODR and RR. The secondary outcome measures included the AOFAS (88.0 in the RR group and 90.0 for ODR; p = 0.722), FAOS (87.5 in the RR group and 92.9 for ODR; p = 0.399), and EQ-5D (0.87 in the RR group and 0.96 for ODR; p = 0.092). Conclusion. This study demonstrated no functional difference comparing ODR to RR in syndesmotic injuries at a four year follow-up period, which supports the results of the primary RODEO trial. ODR should be the standard practice after syndesmotic screw fixation. Cite this article: Bone Jt Open 2023;4(12):957–963


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 212 - 219
1 Feb 2020
Ræder BW Figved W Madsen JE Frihagen F Jacobsen SB Andersen MR

Aims. In a randomized controlled trial with two-year follow-up, patients treated with suture button (SB) for acute syndesmotic injury had better outcomes than patients treated with syndesmotic screw (SS). The aim of this study was to compare clinical and radiological outcomes for these treatment groups after five years. Methods. A total of 97 patients with acute syndesmotic injury were randomized to SS or SB. The five-year follow-up rate was 81 patients (84%). The primary outcome was the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle Hindfoot Scale. Secondary outcome measures included Olerud-Molander Ankle (OMA) score, visual analogue scale (VAS), EuroQol five-dimension questionnaire (EQ-5D), range of movement, complications, reoperations, and radiological results. CT scans of both ankles were obtained after surgery, and after one, two, and five years. Results. The SB group had higher median AOFAS score (100 (interquartile range (IQR) 92 to 100) vs 90 (IQR 85 to 100); p = 0.006) and higher median OMA score (100 (IQR 95 to 100) vs 95 (IQR 75 to 100); p = 0.006). The SS group had a higher incidence of ankle osteoarthritis (OA) (24 (65%) vs 14 (35%), odds ratio (OR) 3.4 (95% confidence interval (CI) 1.3 to 8.8); p = 0.009). On axial CT we measured a significantly smaller mean difference in the anterior tibiofibular distance between injured and non-injured ankles in the SB group (–0.1 mm vs 1.2 mm; p = 0.016). Conclusion. Five years after syndesmotic injury treated with either SB or SS, we found better AOFAS and OMA scores, and lower incidence of ankle OA, in the SB group. These long-term results favour the use of SB when treating an acute syndesmotic injury. Cite this article: Bone Joint J 2020;102-B(2):212–219


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 50 - 50
11 Apr 2023
Souleiman F Zderic I Pastor T Gehweiler D Gueorguiev B Galie J Kent T Tomlinson M Schepers T Swords M
Full Access

The quest for optimal treatment of acute distal tibiofibular syndesmotic disruptions is still in progress. Using suture-button repair devices is one of the dynamic stabilization options, however, they may not be always appropriate for stabilization of length-unstable syndesmotic injuries. Recently, a novel screw-suture repair system was developed to address such issues. The aim of this study was to investigate the performance of the novel screw-suture repair system in comparison to a suture-button stabilization of unstable syndesmotic injuries. Eight pairs of human cadaveric lower legs were CT scanned under 700 N single-leg axial loading in five foot positions – neutral, 15° external/internal rotation and 20° dorsi-/plantarflexion – in 3 different states: (1) pre-injured (intact); (2) injured, characterized by complete syndesmosis and deltoid ligaments cuts simulating pronation-eversion injury types III and IV as well as supination-eversion injury type IV according to Lauge-Hansen; (3) reconstructed, using a screw-suture (FIBULINK, Group 1) or a suture-button (TightRope, Group 2) implants for syndesmotic stabilization, placed 20 mm proximal to the tibia plafond. Following, all specimens were: (1) biomechanically tested over 5000 cycles under combined 1400 N axial and ±15° torsional loading; (2) rescanned. Clear space (diastasis), anterior tibiofibular distance, talar dome angle and fibular shortening were measured radiologically from CT scans. Anteroposterior (AP), axial, mediolateral and torsional movements at the distal tibiofibular joint level were evaluated biomechanically via motion tracking. In each group clear space increased significantly after injury (p ≤ 0.004) and became significantly smaller in reconstructed compared with both pre-injured and injured states (p ≤ 0.041). In addition, after reconstruction it was significantly smaller in Group 1 compared to Group 2 (p < 0.001). AP and axial movements were significantly smaller in Group 1 compared with Group 2 (p < 0.001). No further significant differences were identified/detected between the groups (p ≥ 0.113). Although both implant systems demonstrate ability for stabilization of unstable syndesmotic injuries, the screw-suture reconstruction provides better anteroposterior translation and axial stability of the tibiofibular joint and maintains it over time under dynamic loading. Therefore, it could be considered as a valid option for treatment of syndesmotic disruptions


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 22 - 22
4 Apr 2023
Souleiman F Zderic I Pastor T Gehweiler D Gueorguiev B Galie J Kent T Tomlinson M Schepers T Swords M
Full Access

The quest for optimal treatment of acute distal tibiofibular syndesmotic disruptions is still in full progress. Using suture-button repair devices is one of the dynamic stabilization options, however, they may not be always appropriate for stabilization of length-unstable syndesmotic injuries. Recently, a novel screw-suture repair system was developed to address such issues. The aim of this study was to investigate the performance of the novel screw-suture repair system in comparison to a suture-button stabilization of unstable syndesmotic injuries. Eight pairs of human cadaveric lower legs were CT scanned under 700 N single-leg axial loading in five foot positions – neutral, 15° external/internal rotation and 20° dorsi-/plantarflexion – in 3 different states: (1) pre-injured (intact); (2) injured, characterized by complete syndesmosis and deltoid ligaments cuts simulating pronation-eversion injury types III and IV, and supination-eversion injury type IV according to Lauge-Hansen; (3) reconstructed, using a screw-suture (FIBULINK, Group 1) or a suture-button (TightRope, Group 2) implants for syndesmotic stabilization, placed 20 mm proximal to the tibia plafond/joint surface. Following, all specimens were: (1) biomechanically tested over 5000 cycles under combined 1400 N axial and ±15° torsional loading; (2) rescanned. Clear space (diastasis), anterior tibiofibular distance, talar dome angle and fibular shortening were measured radiologically from CT scans. Anteroposterior, axial, mediolateral and torsional movements at the distal tibiofibular joint level were evaluated biomechanically via motion tracking. In each group clear space increased significantly after injury (p ≤ 0.004) and became significantly smaller in reconstructed compared with both pre-injured and injured states (p ≤ 0.041). In addition, after reconstruction it was significantly smaller in Group 1 compared to Group 2 (p < 0.001). Anteroposterior and axial movements were significantly smaller in Group 1 compared with Group 2 (p < 0.001). No further significant differences were detected between the groups (p ≥ 0.113). Conclusions. Although both implant systems demonstrate ability for stabilization of unstable syndesmotic injuries, the screw-suture reconstruction provides better anteroposterior translation and axial stability of the tibiofibular joint and maintains it over time under dynamic loading. Therefore, it could be considered as a valid option for treatment of syndesmotic disruptions


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 348 - 352
1 Mar 2019
Patel S Malhotra K Cullen NP Singh D Goldberg AJ Welck MJ

Aims. Cone beam CT allows cross-sectional imaging of the tibiofibular syndesmosis while the patient bears weight. This may facilitate more accurate and reliable investigation of injuries to, and reconstruction of, the syndesmosis but normal ranges of measurements are required first. The purpose of this study was to establish: 1) the normal reference measurements of the syndesmosis; 2) if side-to-side variations exist in syndesmotic anatomy; 3) if age affects syndesmotic anatomy; and 4) if the syndesmotic anatomy differs between male and female patients in weight-bearing cone beam CT views. Patients and Methods. A retrospective analysis was undertaken of 50 male and 50 female patients (200 feet) aged 18 years or more, who underwent bilateral, simultaneous imaging of their lower legs while standing in an upright, weight-bearing position in a pedCAT machine between June 2013 and July 2017. At the time of imaging, the mean age of male patients was 47.1 years (18 to 72) and the mean age of female patients was 57.8 years (18 to 83). We employed a previously described technique to obtain six lengths and one angle, as well as calculating three further measurements, to provide information on the relationship between the fibula and tibia with respect to translation and rotation. Results. The upper limit of lateral translation in un-injured patients was 5.27 mm, so values higher than this may be indicative of syndesmotic injury. Anteroposterior translation lay within the ranges 0.31 mm to 2.59 mm, and -1.48 mm to 3.44 mm, respectively. There was no difference between right and left legs. Increasing age was associated with a reduction in lateral translation. The fibulae of men were significantly more laterally translated but data were inconsistent for rotation and anteroposterior translation. Conclusion. We have established normal ranges for measurements in cross-sectional syndesmotic anatomy during weight-bearing and also established that no differences exist between right and left legs in patients without syndesmotic injury. Age and gender do, however, affect the anatomy of the syndesmosis, which should be taken into account at time of assessment. Cite this article: Bone Joint J 2019;101-B:348–352


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 48 - 48
1 Mar 2008
Jenkinson R Sanders D MacLeod M Domonkos A
Full Access

This study is designed to evaluate intra-operative stress testing on detection of syndesmosis injuries. We evaluated forty patients with ankle fractures requiring surgery. Their ankles were subjected to stress examinations after each stage of fixation. These were compared to the contralateral side. Biomechanical criteria were used to predict need for syndesmosis fixation. In 42% of the fractures, intra-operative fluoroscopy found an unpredicted syndesmosis injury. In 8% the syndesmosis was intact despite prediction. Medial malleolar fixation was not adequate for syndesmosis fixation as shown by stress testing. These findings may have implications for future diagnosis and treatment of syndesmosis injuries. This study is designed to evaluate the utility of intra-operative fluoroscopic stress testing in diagnosing tibio-fibular syndesmotic injuries. Forty skeletally mature patients with unilateral external rotation ankle fractures requiring open reduction and internal fixation were prospectively recruited. Intra-operatively the injured ankle was examined fluoroscopically using external rotation, valgus and anterior drawer stress tests, as well as static antero-posterior, mortise, and lateral ankle views. Stress testing was performed using a standardized force of 37.5 N. Stress testing was done after each stage of fixation (lateral, medial, and syndesmotic). The uninjured contralateral limb was examined as a control, and a 1 mm side to side difference was defined as a positive stress examination. Intra-operative fluoroscopy detected unpredicted syndesmotic injuries in 42 % of ankle injuries. In all cases, fixation of the medial malleolus did not restore syndesmotic stability. In 8 % of ankle injuries, a syndesmotic injury was predicted but stress testing revealed the syndesmosis intact. Intra-operative fluoroscopy is a more sensitive modality for detection of otherwise unpredicted syndesmotic injuries compared to criteria based upon static radiographs. Medial malleolar fixation did not add stability to syndesmotic injuries in this study. Injuries involving the distal tibio-fibular syndesmosis are difficult to detect. Previously, the decision to stabilize the syndesmosis in ankle fractures was based upon biomechanical criteria and static radiography. This and other recent studies challenge this, suggesting fluoroscopic stress testing is a better diagnostic method for these poorly tolerated injuries. Funding: Synthes Canada, Smith Nephew Richards Inc


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_9 | Pages 21 - 21
16 May 2024
Morrell R Abas S Kakwani R Townshend D
Full Access

Background. The use of a knotless TightRope for the stabilisation of a syndesmotic injury is a well-recognised mode of fixation. It has been described that the device can be inserted using a “closed” technique. This presents a risk of saphenous nerve entrapment and post-operative pain. Aim. We aimed to establish the actual risk of injury to the Saphenous Nerve using a “closed” technique for the insertion of a TightRope. Method. 20 TightRopes were inserted into Fresh Frozen Cadavers. This was done using the senior authors preferred technique of divergent tightropes with the distal implant directed slightly anterior to the fibula-tibia axis and the proximal implant slightly posterior in order to simulate the greatest risk to the nerve. This was done under image Intensifier guidance to simulate an intraoperative environment. The medial side of the distal tibia was then dissected to directly record and measure the relationship of the TightRope to the Saphenous Nerve. Measurements were taken using digital calipers from the centre of the button on the medial side of the TightRope to the centre of the nerve at the point of closest proximity. Results. 12 TightRopes were found to exit posterior to the nerve, 7 anterior and 1 penetrated through the centre of the nerve. The mean distance from the centre of the button to the nerve was 6.99mm (range 0.72–14.52mm, standard deviation 4.33mm). In 9 of the 20 TightRopes, the nerve was found to be less than 5mm away. Conclusion. Our findings demonstrated that the risks of damaging or indeed entrapping the Saphenous nerve were high, and therefore we would advocate an open incision on the medial side with judicious exploration to ensure there is no damage to the medial neurological structures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_7 | Pages 23 - 23
8 May 2024
Jayatilaka M Fisher A Fisher L Molloy A Mason L
Full Access

Introduction. The treatment of posterior malleolar fractures is developing. Mason and Molloy (Foot Ankle Int. 2017 Nov;38(11):1229-1235) identified only 49% of posterior malleolar rotational pilon type fractures had syndesmotic instabilities. This was against general thinking that fixation of such a fragment would stabilize the syndesmosis. Methods. We examined 10 cadaveric lower limbs that had been preserved for dissection at the Human Anatomy and Resource Centre at Liverpool University in a solution of formaldehyde. The lower limbs were carefully dissected to identify the ligamentous structures on the posterior aspect of the ankle. To compare the size to the rotational pilon posterior malleolar fracture (Mason and Molloy 2A and B) we gathered information from our posterior malleolar fracture database. 3D CT imaging was analysed using our department PACS system. Results. The PITFL insertion on the posterior aspect of the tibia is very large. The average size of insertion was 54.9×47.1mm across the posterior aspect of the tibia. Medially the PITFL blends into the sheath of tibialis posterior and laterally into the peroneal tendon sheath. 78 posterior lateral and 35 posterior medial fragments were measured. On average, the lateral to medial size of the posteromalleolar fragment was 24.5mm in the posterolateral fragment, and 43mm if there is a posteromedial fragment present also. The average distal to proximal size of the posterolateral fragment was 24.5mm and 18.5mm for the posteromedial fragment. Conclusion. The PITFL insertion on the tibia is broad. In comparison to the average size of the posterior malleolar fragments, the PITFL insertion is significantly bigger. Therefore, for a posterior malleolar fracture to cause posterior syndesmotic instability, a ligamentous injury will also have to occur. This explains the finding by Mason and Molloy that only 49% of type 2 injuries had a syndesmotic injury on testing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 5 - 5
2 Jan 2024
Huyghe M Peiffer M Cuigniez F Tampere T Ashkani-Esfahani S D'Hooghe P Audenaert E Burssens A
Full Access

One-fourth of all ankle trauma involve injury to the syndesmotic ankle complex, which may lead to syndesmotic instability and/or posttraumatic ankle osteoarthritis in the long term if left untreated. The diagnosis of these injuries still poses a deceitful challenge, as MRI scans lack physiologic weightbearing and plain weightbearing radiographs are subject to beam rotation and lack 3D information. Weightbearing cone-beam CT (WBCT) overcomes these challenges by imaging both ankles during bipedal stance, but ongoingdebate remains whether these should be taken under weightbearing conditions and/or during application of external rotation stress. The aim of this study is study therefore to compare both conditions in the assessment of syndesmotic ankle injuries using WBCT imaging combined with 3D measurement techniques. In this retrospective study, 21 patients with an acute ankle injury were analyzed using a WBCT. Patients with confirmed syndesmotic ligament injury on MRI were included, while fracture associated syndesmotic injuries were excluded. WBCT imaging was performed in weightbearing and combined weightbearing-external rotation. In the latter, the patient was asked to internally rotate the shin until pain (VAS>8/10) or a maximal range of motion was encountered. 3D models were developed from the CT slices, whereafter. The following 3D measurements were calculated using a custom-made Matlab® script; Anterior tibiofibular distance (AFTD), Alpha angle, posterior Tibiofibular distance (PFTD) and Talar rotation (TR) in comparison to the contralateral non-injured ankle. The difference in neutral-stressed Alpha angle and AFTD were significant between patients with a syndesmotic ankle lesion and contralateral control (P=0.046 and P=0.039, respectively). There was no significant difference in neutral-stressed PFTD and TR angle. Combined weightbearing-external rotation during CT scanning revealed an increased AFTD in patients with syndesmotic ligament injuries. Based on this study, application of external rotation during WBCT scans could enhance the diagnostic accuracy of subtle syndesmotic instability


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 284 - 284
1 Mar 2004
Beumer A Swierstra B Mulder P
Full Access

Aims: To study the feasibility of clinical tests in the diagnosis of syndesmotic injury of the ankle. Methods: 9 investigators examined 12 persons twice, including 2 patients with an arthroscopically-conþrmed syndesmotic injury. The persons were sitting behind a curtain that exposed only the lower legs. Results: There was a signiþcant relation between the þnal arthroscopic diagnosis and the squeeze test, þbula translation test, Cotton test, and external rotation test, as well as limited dorsal ßexion. None of the syndesmotic tests was uniformly positive in chronic syndesmotic injury. The external rotation test had the fewest false-positive results, the þbula translation test the most. The external rotation test had the smallest inter-observer variance. The physical diagnosis was missed in about one þfth of all examinations. Conclusions: When in accordance with medical history and physical examination, positive stress tests should raise a high index of suspicion of syndesmotic injury. The þnal diagnosis of syndesmotic instability, however, should be made by additional diagnostic imaging and/or arthroscopy


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 1 - 1
23 Feb 2023
Chong S Khademi M Reddy K Anderson G
Full Access

Treatment of posterior malleolar (PM) ankle fractures remain controversial. Despite increasing recommendation for small PM fragment fixation, high quality evidence demonstrating improved clinical outcomes over the unfixated PM is limited. We describe the medium-to-long term clinical and radiographical outcomes in younger adult patients with PM ankle fractures managed without PM fragment fixation. A retrospective cohort study of patients aged 18–55 years old admitted under our orthopaedic unit between 1st of April 2009 and 31st of October 2013 with PM ankle fractures was performed. Inclusion criteria were that all patients must mobilise independently pre-trauma, have no pre-existing ankle pathologies, and had satisfactory bimalleolar and syndesmotic stabilisation. Open fractures, talar fractures, calcaneal fractures, pilon fractures, subsequent re-injury and major complications were excluded. All PM fragments were unfixated. Clinical outcomes were evaluated using Foot and Ankle Ability Measure (FAAM) with activities of daily living (ADL) and sports subscale, visual analogue scale (VAS) and patient satisfaction ratings. Osteoarthrosis was assessed using modified Kellgren-Lawrence scale on updated weightbearing ankle radiographs. 61 participants were included. Mean follow-up was 10.26 years. Average PM size was 16.19±7.39%. All participants were evaluated for clinical outcomes, demonstrating good functional outcomes (FAAM-ADL 95.48±7.13; FAAM-Sports 86.39±15.52) and patient satisfaction (86.16±14.42%), with minimal pain (VAS 1.13±1.65). Radiographical outcomes were evaluated in 52 participants, showing no-to-minimal osteoarthrosis in 36/52 (69.23%), mild osteoarthrosis in 14/52 (26.92%) and moderate osteoarthrosis in 2/52 (3.85%). Clinical outcomes were not associated with PM fragment size, post-reduction step-off, dislocation, malleoli fractured or syndesmotic injury. PM step-off and dislocation were associated with worse radiographical osteoarthrosis. Other published medium-to-long term studies reported overall good outcomes, with no differences after small fragment fixation. The unfixated smaller posterior malleolus fragment demonstrated overall satisfactory clinical and radiographical outcomes at 10-year follow-up and may be considered a valid treatment strategy


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 14 - 14
1 May 2012
Lam P
Full Access

Ankle sprains have been shown to be the most common sports related injury. Ankle sprain may be classified into low ankle sprain or high ankle sprain. Low ankle sprain is a result of lateral ligament disruption. It accounts for approximately 25% of all sports related injuries. The ankle lateral ligament complex consists of three important structures, namely the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL) and posterior talofibular ligament (PTFL). The ATFL is the weakest and most easily injured of these ligaments. It is often described as a thickening of the anterolateral ankle capsule. The ATFL sits in a vertical alignment when the ankle is plantarflexed and thus is the main stabiliser against an inversion stress. T he CFL is extracapsular and spans both the tibiotalar and talocalcaneal joints. The CFL is vertical when the ankle is dorsiflexed. An isolated injury to the CFL is uncommon. Early diagnosis, functional management and rehabilitation are the keys to preventing chronic ankle instability following a lateral ligament injury. Surgery does not play a major role in the management of acute ligament ruptures. Despite this up to 20% of patients will develop chronic instability and pain with activities of daily living and sport especially on uneven terrain. Anatomic reconstruction for this group of patients is associated with 90% good to excellent results. It is important that surgery is followed by functional rehabilitation. One of the aims of surgery in patients with recurrent instability is to prevent the development of ankle arthritis. It should be noted that the results of surgical reconstruction are less predictable in patients with greater than 10 year history of instability. Careful assessment of the patient with chronic instability is required to exclude other associated conditions such as cavovarus deformity or generalised ligamentous laxity as these conditions would need to be addressed in order to obtain a successful outcome. High ankle sprain is the result of injury to the syndesmotic ligaments. The distal tibiofibular joint is comprised of the tibia and fibula, which are connected by anterior inferior tibiofibular ligament, interosseous ligament and the posterior inferior tibiofibular ligament (superficial and deep components). The mechanism of injury is external rotation and hyperdorsiflexion. High index of suspicion is required as syndesmotic injuries can occur in association of low ankle sprains. The clinical tests used in diagnosing syndesmotic injuries (external rotation, squeeze, fibular translation and cotton) do not have a high predictive value. It is important to exclude a high fibular fracture. Plain radiographs are required. If the radiograph is normal then MRI scan is highly accurate in detecting the syndesmotic disruption. Functional rehabilitation is required in patients with stable injuries. Syndesmotic injuries are often associated with a prolonged recovery time. Accurate reduction and operative stabilisation is associated with the best functional outcome in patients with an unstable syndesmotic injury. Stabilisation has traditionally been with screw fixation. Suture button syndesmosis fixation is an alternative. Early short-term reviews show this alternate technique has improved patient outcomes and faster rehabilitation without the need for implant removal


Bone & Joint 360
Vol. 3, Issue 5 | Pages 33 - 35
1 Oct 2014

The October 2014 Research Roundup. 360 . looks at: unpicking syndesmotic injuries: CT scans evaluated; surgical scrub suits and sterility in theatre; continuous passive motion and knee injuries; whether pain at night is melatonin related;venous thromboembolic disease following spinal surgery; clots in lower limb plasters; immune-competent cells in Achilles tendinopathy; and infection in orthopaedics


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 43 - 43
1 Nov 2021
Peiffer M Arne B Sophie DM Thibault H Kris B Jan V Audenaert E
Full Access

Introduction and Objective. Forced external rotation is hypothesized as the key mechanism of syndesmotic ankle injuries. This complex trauma pattern ruptures the syndesmotic ligaments and induces a three-dimensional deviation from the normal distal tibiofibular joint configuration. However, current diagnostic imaging modalities are impeded by a two-dimensional assessment, without taking into account ligamentous stabilizers. Therefore, our aim is two-fold: (1) to construct an articulated statistical shape model of the normal ankle with inclusion of ligamentous morphometry and (2) to apply this model in the assessment of a clinical cohort of patients with syndesmotic ankle injuries. Materials and Methods. Three-dimensional models of the distal tibiofibular joint were analyzed in asymptomatic controls (N= 76; Mean age 63 +/− 19 years), patients with syndesmotic ankle injury (N = 13; Mean age 35 +/− 15 years), and their healthy contralateral equivalent (N = 13). Subsequently, the statistical shape model was generated after aligning all ankles based on the distal tibia. The position of the syndesmotic ligaments was predicted based on previously validated iterative shortest path calculation methodology. Evaluation of the model was described by means of accuracy, compactness and generalization. Canonical Correlation Analysis was performed to assess the influence of syndesmotic lesions on the distal tibiofibular joint congruency. Results. Our presented model contained an accuracy of 0.23 +/− 0.028 mm. Mean prediction accuracy of ligament insertions was 0.53 +/− 12 mm. A statistically significant difference in anterior syndesmotic distance was found between ankles with syndesmotic lesions and healthy controls (95% CI [0.32, 3.29], p = 0.017). There was a significant correlation between presence of syndesmotic injury and the morphological distal tibiofibular configuration (r = 0.873, p <0,001). Conclusions. In this study, we constructed a bony and ligamentous statistical model representing the distal tibiofibular joint Furthermore, the presented model was able to detect an elongation injury of the anterior inferior tibiofibular ligament after traumatic syndesmotic lesions in a clinical patient cohort


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 495 - 495
1 Aug 2008
Wee A Samad S Robinson A Gibbons D Vowler S
Full Access

Introduction: Ankle syndesmotic injury is currently assessed by radiographic criteria defined by Pettrone. These indices are based on the assumption that the ankle is in the correct rotation when the radiographs are taken. This study shows that computerized tomographic (CT) scans of an ankle in its mortice orientation demonstrate a greater range of values for the tibio-fibular overlap (TFO), and the tibial clear space (TCS) than that proposed by Pettrone. This study also demonstrates how rotation of the ankle in the transverse axis changes the values for the TFO and TCS. Materials and Method: 20 uninjured ankle CT scans were studied to evaluate the syndesmosis. The images were orientated so that measurements were taken 1cm above the tibial plafond with the ankle in a mortice orientation. Each image was rotated 5° from 15° external rotation to 20° internal rotation. Bony landmarks were confirmed prior to taking measurements. These were taken by 2 orthopaedic surgeons on 2 separate occasions. Results: The range for the TFO is 0–11.6mm; the range for the TCS is 2–6.1mm. The range for the values is greater than that proposed by previous studies. The TFO and TCS change with rotation of the leg. Conclusion: On the AP radiograph syndesmotic disruption is indicated by a TCS > 5mm, a TFO < 10mm and on the mortise view a TFO < 1mm. A normal ankle should therefore have a TCS less than 5mm and TFO greater than 10mm on the AP and greater than 1mm on the mortise view. There is a greater normal range of syndesmotic width found on CT scans than suggested by previous studies. Values change with rotation of the leg in its transverse plane. Syndesmotic injury cannot be reliably diagnosed using the current radiological criteria


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 480 - 480
1 Nov 2011
Shah A Kadakia A Tan G Karadsheh M Sabb B
Full Access

Introduction: Diagnosis of syndesmotic injuries is primarily based upon the assessment of ankle radiographs. Earlier studies examining normal radiographs are limited by small sample size and methodological issues. Materials and Methods: One thousand four hundred and fifteen consecutive patients with ankle radiographs were reviewed. 1023 patients were excluded as a result of a history of ankle/hindfoot pain, trauma, or surgery; or radiographic evidence of ankle/hindfoot pathology. 392 patients (218 females, 174 males) with normal ankle radiographs were included. 83 of 392 patients had bilateral normal radiographs. All radiographs were reviewed independently by a fellowship-trained foot and ankle surgeon and a fellowship-trained musculoskeletal radiologist. Tibiofibular overlap and tibiofibular clear space were measured on anteroposterior (AP) and mortise radiographs. These four measurements were analyzed. Results: Mean AP overlap was 8.3 mm (±2.5). Mean mortise overlap was 3.5 mm (±2.1), 7.7% patients had < 1 mm overlap and 4.9% of patients had < 0 mm overlap. Mean AP clear space was 4.6 mm (±1.1), 7.1% patients had > 6 mm clear space. Mean mortise clear space was 4.3 mm (±1.0), 4.3% patients had > 6 mm clear space. All measurements were significantly different between females and males (p < 0.001). Mortise clear space is the most accurate measure when obtaining contralateral radiographs. Intraobserver and interobserver reliabilities of all measurements were high (intra-class correlation coefficient range 0.820–0.983). Discussion and Conclusion: Our data unequivocally demonstrates that basing treatment of syndesmotic injuries on previously reported radiographic criteria can lead to unnecessary operative intervention or failure to treat. Lack of overlap on the mortise view can represent a normal variant, which has not been definitively reported in prior investigations. Our data forms the basis for new radiographic criteria to evaluate syndesmotic disruption