Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 69 - 69
1 Dec 2022
Clarke M Beaudry E Besada N Oguaju B Nathanail S Westover L Sommerfeldt M
Full Access

Meniscal root tears can result from traumatic injury to the knee or gradual degeneration. When the root is injured, the meniscus becomes de-functioned, resulting in abnormal distribution of hoop stresses, extrusion of the meniscus, and altered knee kinematics. If left untreated, this can cause articular cartilage damage and rapid progression of osteoarthritis. Multiple repair strategies have been described; however, no best fixation practice has been established. To our knowledge, no study has compared suture button, interference screw, and HEALICOIL KNOTLESS fixation techniques for meniscal root repairs. The goal of this study is to understand the biomechanical properties of these fixation techniques and distinguish any advantages of certain techniques over others. Knowledge of fixation robustness will aid in surgical decision making, potentially reducing failure rates, and improving clinical outcomes. 19 fresh porcine tibias with intact medial menisci were randomly assigned to four groups: 1) native posterior medial meniscus root (PMMR) (n = 7), 2) suture button (n = 4), 3) interference screw (n = 4), or 4) HEALICOIL KNOTLESS (n = 4). In 12 specimens, the PMMR was severed and then refixed by the specified group technique. The remaining seven specimens were left intact. All specimens underwent cyclic loading followed by load-to-failure testing. Elongation rate; displacement after 100, 500, and 1000 cycles; stiffness; and maximum load were recorded. Repaired specimens had greater elongation rates and displacements after 100, 500, and 1000 cycles than native PMMR specimens (p 0.05). The native PMMR showed greater maximum load than all repair techniques (p 0.05). In interference screw and HEALICOIL KNOTLESS specimens, failure occurred as the suture was displaced from the fixation and tension was gradually lost. In suture button specimens, the suture was either displaced or completely separated from the button. In some cases, tear formation and partial failure also occurred at the meniscus luggage tag knot. Native PMMR specimens failed through meniscus or meniscus root tearing. All fixation techniques showed similar biomechanical properties and performed inferiorly to the native PMMR. Evidence against significant differences between fixation techniques suggests that the HEALICOIL KNOTLESS technique may present an additional option for fixation in meniscal root repairs. While preliminary in vitro evidence suggests similarities between fixation techniques, further research is required to determine if clinical outcomes differ


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 31 - 31
1 Nov 2016
Morellato J Louati H Bodrogi A Stewart A Papp S Liew A Gofton W
Full Access

Traditional screw fixation of the syndesmosis can be prone to malreduction. Suture button fixation however, has recently shown potential in securing the fibula back into the incisura even with intentional malreduction. Yet, if there is sufficient motion to aid reduction, the question arises of whether or not this construct is stable enough to maintain reduction under loaded conditions. To date, there have been no studies assessing the optimal biomechanical tension of these constructs. The purpose of this study was to assess optimal tensioning of suture button fixation and its ability to maintain reduction under loaded conditions using a novel stress CT model. Ten cadaveric lower limbs disarticulated at the knee were used. The limbs were placed in a modified external fixator frame that allows for the application of sustained torsional (5 Nm), axial (500 N) and combined torsional/axial (5Nm/500N) loads. Baseline CT scans of the intact ankle under unloaded and loaded conditions were obtaining. The syndesmosis and the deltoid ligament complex were then sectioned. The limbs were then randomised to receive a suture button construct tightened at 4 kg force (loose), 8 kg (standard), or 12 kg (maximal) of tension and CT scans under loaded and unloaded conditions were again obtained. Eight previously described measurements were taken from axial slices 10 mm above the tibiotalar joint to assess the joint morphology under the intact and repair states, and the three loading conditions: a measure of posterolateral translation (a, b), medial/lateral translation (c, g), a measure of anterior-posterior translation (f), a ratio of anterior-posterior translation (d/e), an angle (Angle 1) created by a line parallel to the incisura and the axis of the fibula, and an angle (Angle 2) created between the medial surfaces of two malleoli. These measurements have all been previously described. Each measurement was taken at baseline and compared with the three loading scenarios. A repeated measures ANOVA with a Bonferroni correction for multiple comparisons was used to test for significance. Significant lateral (g, maximum 5.26 mm), posterior (f, maximum 6.42 mm), and external rotation (angle 2, maximum 11.71°) was noted with the 4 kg repair when compared to the intact, loaded state. Significant posterior translation was also seen with the both the 8 kg and 12 kg repairs, however the incidence and magnitude was less than with the 4 kg repair. Significant overcompression (g, 1.69 mm) was noted with the 12 kg repair. Suture button constructs must be appropriately tensioned to maintain reduction and re-approximate the degree of physiological motion at the distal tibiofibular joint. If inserted too loosely, these constructs allow for supraphysiologic motion which may have negative implications on ligament healing. These constructs also demonstrate overcompression of the syndesmosis when inserted at maximal tension however the clinical effect of this remains to be determined


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 96 - 96
1 Jul 2020
Khan M Alolabi B Horner N Stride D Wang J
Full Access

Ankle fractures are the fourth most common fracture requiring surgical management. The deltoid ligament is considered the primary stabilizer of the ankle against a valgus force. The management of the deltoid ligament in ankle fractures is currently a controversial topic no consensus exists regarding repair in the setting of ankle fractures. The purpose of this systematic review is to examine the role and indications for deltoid ligament repair in ankle fractures. A systematic database search was conducted with Medline, Pubmed and Embase for relevant studies discussing patients with ankle fractures involving deltoid ligament rupture and repair. The papers were screened independently and in duplicate by two reviewers. Study quality was evaluated using the MINORs criteria. Data extraction included post-operative outcomes, pain, range of motion (ROM), function, medial clear space (MCS), syndesmotic malreduction and complication rates. Following title, abstract and full text screening, 10 eligible studies published between 1987 and 2017 remained for data extraction (n = 528). The studies include 325 Weber B and 203 Weber C type fractures. Malreduction rate in studies with deltoid ligament repair was 7.4% in comparison to those without repair at 33.3% (p < 0.05). Eleven (4%) of deltoid ligament repair patients returned for re-operation to have implants removed in comparison to eighty three (42%) of those without repair (p < 0.05). There was no significant difference for pain, function, ROM, MCS and complication rates (p < 0.05). The mean operating time of deltoid ligament repair groups was 20 minutes longer than non-repair groups(p < 0.05). Deltoid ligament repair offers significantly lower syndesmotic malreduction rates and reduced re-operation rates for hardware removal when performed instead of transsyndesmotic screw fixation. When compared to non-repair groups, there are no significant differences in pain, function, ROM, MCS and complication rates. Deltoid ligament repair should be considered for ankle fracture patients with syndesmotic injury, especially those with Weber C. Other alternative syndesmotic fixation methods such as suture button fixation should be explored. A large multi-patient randomized control trial is required to further examine the outcomes of ankle fracture patients with deltoid ligament repair


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 14 - 14
1 May 2012
Lam P
Full Access

Ankle sprains have been shown to be the most common sports related injury. Ankle sprain may be classified into low ankle sprain or high ankle sprain. Low ankle sprain is a result of lateral ligament disruption. It accounts for approximately 25% of all sports related injuries. The ankle lateral ligament complex consists of three important structures, namely the anterior talofibular ligament (ATFL), calcaneofibular ligament (CFL) and posterior talofibular ligament (PTFL). The ATFL is the weakest and most easily injured of these ligaments. It is often described as a thickening of the anterolateral ankle capsule. The ATFL sits in a vertical alignment when the ankle is plantarflexed and thus is the main stabiliser against an inversion stress. T he CFL is extracapsular and spans both the tibiotalar and talocalcaneal joints. The CFL is vertical when the ankle is dorsiflexed. An isolated injury to the CFL is uncommon. Early diagnosis, functional management and rehabilitation are the keys to preventing chronic ankle instability following a lateral ligament injury. Surgery does not play a major role in the management of acute ligament ruptures. Despite this up to 20% of patients will develop chronic instability and pain with activities of daily living and sport especially on uneven terrain. Anatomic reconstruction for this group of patients is associated with 90% good to excellent results. It is important that surgery is followed by functional rehabilitation. One of the aims of surgery in patients with recurrent instability is to prevent the development of ankle arthritis. It should be noted that the results of surgical reconstruction are less predictable in patients with greater than 10 year history of instability. Careful assessment of the patient with chronic instability is required to exclude other associated conditions such as cavovarus deformity or generalised ligamentous laxity as these conditions would need to be addressed in order to obtain a successful outcome. High ankle sprain is the result of injury to the syndesmotic ligaments. The distal tibiofibular joint is comprised of the tibia and fibula, which are connected by anterior inferior tibiofibular ligament, interosseous ligament and the posterior inferior tibiofibular ligament (superficial and deep components). The mechanism of injury is external rotation and hyperdorsiflexion. High index of suspicion is required as syndesmotic injuries can occur in association of low ankle sprains. The clinical tests used in diagnosing syndesmotic injuries (external rotation, squeeze, fibular translation and cotton) do not have a high predictive value. It is important to exclude a high fibular fracture. Plain radiographs are required. If the radiograph is normal then MRI scan is highly accurate in detecting the syndesmotic disruption. Functional rehabilitation is required in patients with stable injuries. Syndesmotic injuries are often associated with a prolonged recovery time. Accurate reduction and operative stabilisation is associated with the best functional outcome in patients with an unstable syndesmotic injury. Stabilisation has traditionally been with screw fixation. Suture button syndesmosis fixation is an alternative. Early short-term reviews show this alternate technique has improved patient outcomes and faster rehabilitation without the need for implant removal