Introduction. Hip resurfacing (HRA) designer centres have reported survivorships between 88.5–96% at 12 years. Arthroplasty Registries (AR) reported less favourable results especially in females gender and small sizes. The aim of this study was to evaluate the minimum 10-year
Population-based studies from the United States have reported that sarcoma patients living in rural areas or belonging to lower socioeconomic classes experience worse overall survival; however, the evidence is not clear for universal healthcare systems where financial resources should theoretically not affect access to standard of care. The purpose of this study was to determine the
Abstract. Background. To determine the long-term
The aim of this study was to determine the long term 20 year
Aims. The aims of this retrospective study were to determine the incidence of extra-articular deformities (EADs), and determine their effect on postoperative alignment in knees undergoing mobile-bearing, medial unicompartmental knee arthroplasty (UKA). Patients and Methods. Limb mechanical alignment (hip-knee-ankle angle), coronal bowing of the femoral shaft and proximal tibia vara or medial proximal tibial angle (MPTA) were measured on standing, full-length hip-to-ankle radiographs of 162 patients who underwent 200 mobile-bearing, medial UKAs. Results. Incidence of EAD was 7.5% for coronal femoral bowing of >5°, 67% for proximal tibia vara of >3° (MPTA<87°) and 24.5% for proximal tibia vara of >6° (MPTA<84°). Mean postoperative HKA angle achieved in knees with femoral bowing ≤5° was significantly greater when compared to knees with femoral bowing >5° (p=0.04); in knees with proximal tibia vara ≤3° was significantly greater when compared to knees with proximal tibia vara >3° (p=0.0001) and when compared to knees with proximal tibia vara >6° (p=0.0001). Conclusion. Extra-articular deformities are frequently seen in patients undergoing mobile-bearing medial UKAs, especially in knees with varus deformity>10°. Presence of an EAD significantly affects postoperative mechanical limb alignment achieved when compared to limbs without EAD and may increase the risk of limbs being placed in varus>3° postoperatively. Clinical Relevance. Since the presence of an EAD, especially in knees with varus deformity>10°, may increase the risk of limbs being placed in varus>3° postoperatively and may affect long-term clinical and implant
Background. In the late 1980's Michael Freeman conceived the idea that knee replacement would most closely replicate the natural knee joint, if the medial Tibio-Femoral articulation was configured as a “ball-in-socket”. Over the last three decades, medial rotation and medial pivot designs have proved successful in clinical use. Freeman's final iteration of the medial ball-in-socket concept was the Medial Sphere knee. We report the three-year survivorship, clinical outcomes, patient reported outcome measures (PROMs) and radiographic analysis of this implant in a multi-centre, multi-surgeon, prospective observational study. Methods. Patients awaiting total knee replacement were recruited by four centres. They had no medical contraindication to surgery, were able to provide informed consent and were available for follow-up. Primary outcome was implant survival at six months, one, two, three and five years. Secondary outcomes were patient reported outcome measures: Oxford Knee Score (OKS), Euroqol (EQ-5D), International Knee Society Score (IKSS), IKSS Functional score and Health State score, complications and radiographic outcomes. Radiographic analysis was undertaken using the TraumaCad software and data analysis was undertaken using SPSS. Results. To date, 328 female and 202 male patients with a mean age 66.9 years and mean body mass index 30.0 were recruited. Three year Kaplan-Meier survivorship analysis of cumulative failure showed an implant survival of 99.46% (95% confidence interval 100 – 96.74), when deaths and withdrawals were treated as censored data. Twelve patients withdrew (2.26%), seven died (1.32%) and two knees were revised (0.38%). The mean EQ5D, Health State Scores, OKS, IKSS & IKSS Function scores at three years improved significantly from pre- operative scores (Health State Score: 9.91 (65.59 pre-op to 75.50); OKS: 18.82 (19.90 pre-op to 38.72); IKSS: 39.87 (44.39 pre-op to 92.09); IKSS Function Score: 35.03 (49.42 pre-op to 84.45). The mean improvement of EQ5D at three years was: 0.34 (0.48 pre-op to 0.82). Discussion. Survival of the GMK Sphere to three years in this study was over 99%. Risk of revision compares favourably with UK National Joint Registry (NJR) data. The improvements that are seen in patient reported outcome measures reflect an enhancement in patient function and quality of life. Conclusion. At three years follow-up, the implant demonstrates satisfactory
Background. Navigation systems that increase alignment accuracies of the lower limbs have been applied widely in total knee arthroplasty and are currently being adopted for minimally invasive UKA (MIS UKA) with good alignment results. There is little debate that when compared with total knee arthroplasty (TKA), UKA is less invasive, causes less morbidity, better reproduces kinematics, and therefore offers quicker recovery, better range of movement and more physiologic function. However, despite improved alignment accuracies, advantages of use of navigation system in UKA in clinical outcomes and survivals are still debatable. To the best of our knowledge, no reports are available on the long-term results after UKA performing using a navigation system. The purpose of this prospective study was to compare the radiological, clinical, and
Background. Total knee arthroplasty (TKA) overall is a very reliable, durable procedure. Biomechanical studies have suggested superior stress distribution in metal-backed tibial trays, however, these results have not been universally observed clinically. Currently, there is a paucity of information examining the
Navigation systems that increase alignment accuracies of the lower limbs have been applied widely in total knee arthroplasty and are currently being adopted for minimally invasive UKA (MIS UKA) with good alignment results. There is little debate that when compared with total knee arthroplasty (TKA), UKA is less invasive, causes less morbidity, better reproduces kinematics, and therefore offers quicker recovery, better range of movement and more physiologic function. However, despite improved alignment accuracies, advantages of use of navigation system in UKA in clinical outcomes and survivals are still debatable. To the best of our knowledge, no reports are available on the long-term results after UKA performing using a navigation system. The purpose of this prospective study was to compare the radiological, clinical, and
Introduction. There is a controversy with regard to the treatment of osteoarthritis (OA) of the knee in patients with considerable deformities of the femoral or tibial shafts. Some surgeons prefer to correct the deformity while performing TKA at the level of the knee joint. However, this technique requires accurate planning and execution of the planned cuts. In addition, the use of intramedullary guides in such cases may not be possible or desirable and may lead to complications. There is a strong indication for using navigation in such cases. Methods. The navigation technique was used in both laboratory and clinical setting, First, we compared between navigational and conventional techniques in performing TKA in 24 plastic knee specimens (Sawbones, Sweden) that have osteoarthritic changes and complex tibial or femoral deformities. A demo kit for conventional instrumentation of posterior stabilised TKA (Scorpio, Stryker) was used for 12 cases and an image-free navigation system (Stryker) was used for a corresponding 12 cases. There were 4 different deformities; severe mid-shaft tibial varus, severe distal third femoral valgus, complex deformity distal femur and deformity following a revision TKA. The surgical procedures were performed by 3 arthroplasty surgeons, each surgeon operated on 8 knee specimens (4 knees in each arm of the study with 4 different deformities). Deformities were corrected at the level of the knee joint during TKA without prior osteotomies. For conventional techniques, surgeons used a combination of both intramedullary and extramedullary guides. Postoperative long leg radiographs were used to assess coronal alignment. Second, we used the same navigational technique clinically to perform TKA in patients with extra-articular deformities. Results. Using both navigational and conventional techniques, it was possible to indirectly correct shaft deformities by adjusting the inclination of bone cuts at the level of the knee joint. The amount of bone cutting at distal femur and proximal tibia were variable depending on the location and direction of the deformity. There was no compromise of collateral ligaments or patellar tendons in both techniques. However, the accuracy of restoring normal alignment was better in navigational techniques. The results of the clinical cases are still in progress waiting analysis of a longer term follow up. Discussion. Navigational techniques eliminated the use of both intramedullary and extramedullary guides. The improved accuracy with navigational techniques led to better alignment that can improve functional and
Background. Total knee arthroplasty (TKA) overall is a very reliable, durable procedure. Biomechanical studies have suggested superior stress distribution in metal-backed tibial trays, however, these results have not been universally observed clinically. Currently, there is a paucity of information examining the
Background: Total knee arthroplasty (TKA) overall is a very reliable, durable procedure. Biomechanical studies have suggested superior stress distribution in metal-backed tibial trays, however, these results have not been universally observed clinically. Currently, there is a paucity of information examining the
Background: Total knee arthroplasty (TKA) overall is a very reliable, durable procedure. Biomechanical studies have suggested superior stress distribution in metal-backed tibial trays, however, these results have not been universally observed clinically. Currently there is a paucity of information examining the
Background. Scapular notching causes glenoid bone loss after a reverse total shoulder arthroplasty (rTSA). The goal of this study was to assess the influence of prosthesis design on notching. Methods. Prospective, single surgeon cohort. Two different rTSA designs were consecutively implanted and compared: 25 Delta III rTSAs and 57 Delta Xtend rTSAs in 80 patients. Notching (Nerot 0–4) was assessed at 24 months follow-up. Patient dependent variables, surgical technique and implant geometry were assessed. Multivariate binary logistic regression was used to select the strongest independent predictors of notching. Results. The Delta III showed significantly more notching than the Delta Xtend: 72% and 23% respectively, p<0.001. The extent of notching was comparable. One patient (Delta III) needed revision for notching-associated glenoid loosening. Only 3 variables were significantly associated with notching in multivariate analysis: glenosphere overhang (R square 0.65), prosthesis-scapular neck angle (PSNA, R square 0.18) and humeral cup depth (R square 0.05), predicting 88% of notching cases. The corresponding odds ratios were 0.15 (95% CI 0.05–0.44) for 1 mm extra overhang, 8.4 (95% CI 2.0–35.6) for 10 degrees increase in PSNA and 7.6 (95% CI 1.3–43.3) for 1 mm extra cup depth. Surgical technique related variables, including peg-glenoid rim distance and PSNA, were comparable in both design groups. Conclusion. The key to prevent notching was to utilise the design features that maximise glenosphere overhang. Therefore, as a rule of thumb the baseplate should be positioned as inferior as possible. Minor contributions came from PSNA (patient anatomy/surgical technique) and polyethylene cup depth (also design). One patient required early revision for notching associated baseplate loosening. Long term follow-up is indicated to assess the effect of notching on prosthesis