Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 51 - 51
1 Sep 2012
Pellegrini V
Full Access

The Accreditation Council of Graduate Medical Education (ACGME) has formalized a limit of 16 consecutive duty hours for first year and 20 hours for intermediate level trainees, while maintaining a maximum of 80 duty hours per week despite social pressure to further reduce this limit. Deterioration in cognitive and technical performance secondary to fatigue is the basis for the 16 hour rule, along with the notion that “strategic napping” be strongly encouraged for trainees that must remain for longer shifts. For more senior trainees, graduated independence and responsibility are recognized as important to prepare for the independent practice of medicine. Yet, a reduction of nearly 7000 hours, or the equivalent of 2 years of surgical education and experience, results from the 80-hour duty limitation compared to surgical training of two decades ago. The contention is that duty hours must be constrained to optimize patient safety and the learning environment, but it is unclear whether mastery of the necessary cognitive and technical competencies can be achieved in such a constricted time period. Another worrisome by-product of legislated duty hour limitations is the unintended encouragement of a “shift worker” mentality and erosion of the ethos of professionalism among trainees. Effective mentoring takes on critical importance in this challenging environment, yet productive mentoring may be counter to learned adaptive behaviours and instinctive personality traits of some accomplished surgeon educators. Fostering effective mentors in academic surgery requires us to develop behaviors that are conducive to the mentoring process. As our trainees struggle to achieve mastery of a surgical discipline within a prescribed and constricted time period, we must consider a competency-based system of surgical education rather than one that is time-defined. Likewise, the personal and professional growth of our trainees in this system, as well as the succession planning for our specialty, are dependent upon the creation of an environment conducive to effective mentoring in academic orthopaedics


Bone & Joint Open
Vol. 5, Issue 5 | Pages 419 - 425
20 May 2024
Gardner EC Cheng R Moran J Summer LC Emsbo CB Gallagher RG Gong J Fishman FG

Aims

The purpose of this survey study was to examine the demographic and lifestyle factors of women currently in orthopaedic surgery.

Methods

An electronic survey was conducted of practising female orthopaedic surgeons based in the USA through both the Ruth Jackson Society and the online Facebook group “Women of Orthopaedics”.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 94 - 94
1 Dec 2022
Versteeg A Chisamore N Ng K Elmoursi O Leroux T Zywiel M
Full Access

While surgeon-industry relationships in orthopaedics have a critical role in advancing techniques and patient outcomes, they also present the potential for conflict of interest (COI) and increased risk of bias in surgical education. Consequently, robust processes of disclosure and mitigation of potential COI have been adopted across educational institutions, professional societies, and specialty journals. The past years have seen marked growth in the use of online video-based surgical education platforms that are commonly used by both trainees and practicing surgeons. However, it is unclear to what extent the same COI disclosure and mitigation principles are adhered to on these platforms. Thus, the purpose of the present study was to evaluate the frequency and adequacy of potential COI disclosure on orthopaedic online video-based educational platforms. We retrospectively reviewed videos from a single, publicly-accessible online peer-to-peer orthopaedic educational video platform (VuMedi) that is used as an educational resource by a large number of orthopaedic trainees across North America. The 25 highest-viewed videos were identified for each of 6 subspecialty areas (hip reconstruction, knee reconstruction, shoulder/elbow, foot and ankle, spine and sports). A standardized case report form was developed based on the COI disclosure guidelines of the American Academy of Orthopaedic Surgery (AAOS) and the Journal of Bone and Joint Surgery. Two reviewers watched and assessed each video for presentation of any identifiable commercial products or brand names, disclosure of funding source for video, and presenter's potential conflict of interest. Additionally, presenter disclosures were cross-referenced against commercial relationships reported in the AAOS disclosure database to determine adequacy of disclosure. Any discrepancies between reviewers were resolved by consensus wherever possible, or with adjudication by a third reviewer when necessary. Out of 150 reviewed videos, only 37 (25%) included a disclosure statement of any kind. Sixty-nine (46%) videos involved the presentation of a readily identifiable commercial orthopaedic device, implant or brand. Despite this, only 13 of these (19%) included a disclosure of any kind, and only 8 were considered adequate when compared to the presenter's disclosures in the AAOS database. In contrast, 83% of the presenters of the videos included in this study reported one or more commercial relationships in the AAOS disclosure database. Videos of presentations given at conferences and/or academic meetings had significantly greater rates of disclosure as compared to those that were not (41% vs 14%; p=0.004). Similarly, disclosures associated with conference/meeting presentations had significantly greater rates of adequacy (21% vs 7%; p=0.018). Even so, less than half of the educational videos originating from a conference or meeting included a disclosure of any kind, and only about half of these were deemed adequate. No differences were seen in the rate of disclosures between orthopaedic subspecialties (p=0.791). Online orthopaedic educational videos commonly involve presentation of specific, identifiable commercial products and brands, and the large majority of presenters have existing financial relationships with potential for conflict of interest. Despite this, the overall rate of disclosure of potential conflict of interest in these educational videos is low, and many of these disclosures are incomplete or inadequate. Further work is needed to better understand the impact of this low rate of disclosure on orthopaedic education both in-training and in practice


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 105 - 105
23 Feb 2023
He W Masters R Baker J
Full Access

The minimisation of errors incurred during the learning process is thought to enhance motor learning and improve performance under pressure or in multitasking situations. If this is proven in surgical skills learning, it has the potential to enhance the delivery of surgical education. We aimed to compare errorless and errorful learning using the high-speed burr. Medical students (n=30) were recruited and allocated randomly to an errorless or errorful group. The errorless learning group progressively learnt tasks from easy to difficult on cedar boards simulating bone. The errorful learning group also progressed through the same tasks but not in order of difficulty. Transfer tasks assessed students’ performance of cervical laminoplasty on saw bone models to assess their level of learning from previous stages. During transfer task 2, students completed the procedure under time pressure and in the presence of distractors, in order to simulate real-life stressors in theatre. Accuracy, precision and safety of the procedure were scored by expert opinions from spine surgeons blinded to the grouping of the participants. Both errorless and errorful learners demonstrated improvements in performance with increasing amounts of practice (demonstrated by the decreased time taken for the task as well as improvement in accuracy of the cuts (depth, width and smoothness). The performance of both groups was not impaired by the incorporation of a secondary task which required participants to multitask. No statistically significant difference in performance was noted between the two groups. In contrast to previous research, there was no significant difference between errorless or errorful learning to develop skills with a high-speed, side-cutting burr. In both groups, practical learning during the session has led to improvement in overall performance with the burr relevant to cervical laminoplasty


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 66 - 66
10 Feb 2023
Scherf E
Full Access

This qualitative study aims to explore and highlight the experiences of trainees in the Orthopaedic Surgical Education Training (SET) program in New Zealand, with a focus on identifying gender-specific biases which may impact professional development. Orthopaedic SET trainees in New Zealand were invited to complete a qualitative, semi-structured questionnaire exploring their experiences in the Orthopaedic SET program. A broad range of topics were covered, addressing culture, belonging, learning styles and role modelling. Recurrent themes were identified using inductive methods. Analysis of questionnaire responses identified several key themes for women in the Orthopaedic SET program, compared to their male counterparts, including (1) role incredulity, (2) confidence vs. competence, (3) adaptation, (4) interdisciplinary relationships and (5) role modelling. Female participants described experiencing gender bias or discrimination by both patients and interdisciplinary colleagues at a higher rate than their male counterparts. The majority of female participants described feeling as competent as their male counterparts at the same SET level, however, identified that they do not typically exhibit the same confidence in their surgical abilities. Whilst similar numbers of female and male participants described experiencing barriers to career progression, female participants described having to adapt both physically and socially to overcome additional gender-specific barriers. Positive influences on training experience included role modelling and supportive relationships amongst trainee groups. This study highlighted gender-specific biases experienced by trainees in the Orthopaedic SET program in New Zealand. Further investigation is warranted to determine how these experiences affect professional development, and how they may be addressed to foster increased gender equity in the surgical profession. This will likely require system-level interventions to create meaningful and sustainable culture change


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 16 - 16
10 May 2024
Bartle D Wesley J Bartlett J
Full Access

INTRODUCTION. Simulation plays an important role in surgical education and the ability to perfect surgical performance. Simulation can be enhanced by adding various layers of realism to the experience. Haptic feedback enhances the simulation experience by providing tactile responses and virtual reality imagery provides an immersive experience and allows for greater appreciation of three-dimensional structures. In this study, we present a proof-of-concept haptic simulator to replicate key steps of a cervical laminoplasty procedure. The technology uses affordable components and is easily modifiable so that it can be used from novice through to expert level. Custom models can be easily added ensuring the simulator can be used in a wide range of orthopaedic applications from baseline education through to day of surgery pre-operative simulation. METHOD. We used the Unity Game Engine, the 3D Systems “Touch” Haptic Feedback Device (HFD), and a Meta Quest VR headset. Our system uses a number of complex algorithms to track the shape and provide haptic feedback of a virtual bone model. This allows for simulation of various tools including a high-speed burr, Kerrison rongeur and intraoperative X-rays. RESULTS. Our simulator replicates the tactile sensations of bone-burring tasks. Although we focused on the cervical laminoplasty procedure, the system can load data from CT scans, enabling the simulation of multiple other procedures. The parts cost of our system, $10,000 NZD, is a fraction of the cost of traditional surgical simulators. DISCUSSION. Our simulator reduces financial barriers to accessing orthopaedic simulators. Trainees can perform hands-on practice without compromising patient safety. The immersive nature of VR, combined with realistic haptic feedback, enables trainees to develop the dexterity and three-dimensional understanding of detailed bony work. Further refinements are needed before we can perform validation studies on our system. CONCLUSIONS. We present an affordable surgical simulator capable of simulating bony surgical procedures in a VR environment using haptic feedback technology and consumer-grade components. ACKNOWLEDGEMENTS. This research was made possible by the generosity of the Wishbone Trust


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 89 - 89
1 Dec 2022
Koucheki R Lex J Morozova A Ferri D Hauer T Mirzaie S Ferguson P Ballyk B
Full Access

Novel immersive virtual reality (IVR) technologies are revolutionizing medical education. Virtual anatomy education using head-mounted displays allows users to interact with virtual anatomical objects, move within the virtual rooms, and interact with other virtual users. While IVR has been shown to be more effective than textbook learning and 3D computer models presented in 2D screens, the effectiveness of IVR compared to cadaveric models in anatomy education is currently unknown. In this study, we aim to compare the effectiveness of IVR with direct cadaveric bone models in teaching upper and lower limb anatomy for first-year medical students. A randomized, double-blind crossover non-inferiority trial was conducted. Participants were first-year medical students from a single University. Exclusion criteria included students who undertook prior undergraduate or graduate degrees in anatomy. In the first stage of the study, students were randomized in a 1:1 ratio to IVR or cadaveric bone groups studying upper limb skeletal anatomy. All students were then crossed over and used cadaveric bone or IVR to study lower limb skeletal anatomy. All students in both groups completed a pre-and post-intervention knowledge test. The educational content was based on the University of Toronto Medical Anatomy Curriculum. The Oculus Quest 2 Headsets (Meta Technologies) and PrecisionOS Anatomy application (PrecisionOS Technology) were utilized for the virtual reality component. The primary endpoint of the study was student performance on the pre-and post-intervention knowledge tests. We hypothesized that student performance in the IVR groups would be comparable to the cadaveric bone group. 50 first-year medical students met inclusion criteria and were computer randomized (1:1 ratio) to IVR and cadaveric bone group for upper limb skeletal anatomy education. Forty-six students attended the study, 21 completed the upper limb modules, and 19 completed the lower limb modules. Among all students, average score on the pre-intervention knowledge test was 14.6% (Standard Deviation (SD)=18.2%) and 25.0% (SD=17%) for upper and lower limbs, respectively. Percentage increase in students’ scores between pre-and post-intervention knowledge test, in the upper limb for IVR, was 15 % and 16.7% for cadaveric bones (p = 0. 2861), and for the lower limb score increase was 22.6% in the IVR and 22.5% in the cadaveric bone group (p = 0.9356). In this non-inferiority crossover randomized controlled trial, we found no significant difference between student performance in knowledge tests after using IVR or cadaveric bones. Immersive virtual reality and cadaveric bones were equally effective in skeletal anatomy education. Going forward, with advances in VR technologies and anatomy applications, we can expect to see further improvements in the effectiveness of these technologies in anatomy and surgical education. These findings have implications for medical schools having challenges in acquiring cadavers and cadaveric parts


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 9 - 9
1 Dec 2022
Koucheki R Lex J Morozova A Ferri D Hauer T Mirzaie S Ferguson P Ballyk B
Full Access

Novel immersive virtual reality (IVR) technologies are revolutionizing medical education. Virtual anatomy education using head-mounted displays allows users to interact with virtual anatomical objects, move within the virtual rooms, and interact with other virtual users. While IVR has been shown to be more effective than textbook learning and 3D computer models presented in 2D screens, the effectiveness of IVR compared to cadaveric models in anatomy education is currently unknown. In this study, we aim to compare the effectiveness of IVR with direct cadaveric bone models in teaching upper and lower limb anatomy for first-year medical students. A randomized, double-blind crossover non-inferiority trial was conducted. Participants were first-year medical students from a single University. Exclusion criteria included students who undertook prior undergraduate or graduate degrees in anatomy. In the first stage of the study, students were randomized in a 1:1 ratio to IVR or cadaveric bone groups studying upper limb skeletal anatomy. All students were then crossed over and used cadaveric bone or IVR to study lower limb skeletal anatomy. All students in both groups completed a pre-and post-intervention knowledge test. The educational content was based on the University of Toronto Medical Anatomy Curriculum. The Oculus Quest 2 Headsets (Meta Technologies) and PrecisionOS Anatomy application (PrecisionOS Technology) were utilized for the virtual reality component. The primary endpoint of the study was student performance on the pre-and post-intervention knowledge tests. We hypothesized that student performance in the IVR groups would be comparable to the cadaveric bone group. 50 first-year medical students met inclusion criteria and were computer randomized (1:1 ratio) to IVR and cadaveric bone group for upper limb skeletal anatomy education. Forty-six students attended the study, 21 completed the upper limb modules, and 19 completed the lower limb modules. Among all students, average score on the pre-intervention knowledge test was 14.6% (Standard Deviation (SD)=18.2%) and 25.0% (SD=17%) for upper and lower limbs, respectively. Percentage increase in students’ scores between pre-and post-intervention knowledge test, in the upper limb for IVR, was 15 % and 16.7% for cadaveric bones (p = 0. 2861), and for the lower limb score increase was 22.6% in the IVR and 22.5% in the cadaveric bone group (p = 0.9356). In this non-inferiority crossover randomized controlled trial, we found no significant difference between student performance in knowledge tests after using IVR or cadaveric bones. Immersive virtual reality and cadaveric bones were equally effective in skeletal anatomy education. Going forward, with advances in VR technologies and anatomy applications, we can expect to see further improvements in the effectiveness of these technologies in anatomy and surgical education. These findings have implications for medical schools having challenges in acquiring cadavers and cadaveric parts


Bone & Joint Open
Vol. 2, Issue 3 | Pages 181 - 190
1 Mar 2021
James HK Gregory RJH

The imminent introduction of the new Trauma & Orthopaedic (T&O) curriculum, and the implementation of the Improving Surgical Training initiative, reflect yet another paradigm shift in the recent history of trauma and orthopaedic training. The move to outcome-based training without time constraints is a radical departure from the traditional time-based structure and represents an exciting new training frontier. This paper summarizes the history of T&O training reform, explains the rationale for change, and reflects on lessons learnt from the past.

Cite this article: Bone Jt Open 2021;2-3:181–190.


Bone & Joint Open
Vol. 1, Issue 5 | Pages 98 - 102
6 May 2020
Das De S Puhaindran ME Sechachalam S Wong KJH Chong CW Chin AYH

The COVID-19 pandemic has disrupted all segments of daily life, with the healthcare sector being at the forefront of this upheaval. Unprecedented efforts have been taken worldwide to curb this ongoing global catastrophe that has already resulted in many fatalities. One of the areas that has received little attention amid this turmoil is the disruption to trainee education, particularly in specialties that involve acquisition of procedural skills. Hand surgery in Singapore is a standalone combined programme that relies heavily on dedicated cross-hospital rotations, an extensive didactic curriculum and supervised hands-on training of increasing complexity. All aspects of this training programme have been affected because of the cancellation of elective surgical procedures, suspension of cross-hospital rotations, redeployment of residents, and an unsustainable duty roster. There is a real concern that trainees will not be able to meet their training requirements and suffer serious issues like burnout and depression. The long-term impact of suspending training indefinitely is a severe disruption of essential medical services. This article examines the impact of a global pandemic on trainee education in a demanding surgical speciality. We have outlined strategies to maintain trainee competencies based on the following considerations: 1) the safety and wellbeing of trainees is paramount; 2) resource utilization must be thoroughly rationalized; 3) technology and innovative learning methods must supplant traditional teaching methods; and 4) the changes implemented must be sustainable. We hope that these lessons will be valuable to other training programs struggling to deliver quality education to their trainees, even as we work together to battle this global catastrophe.