Summary Statement. OA knee with subchondral cyst formation presented differential microstructure and mechanical competence of trabecular bone. This finding sheds light on the pivot role of subchondral cyst in OA bone pathophysiology. Introduction. Subchondral bone cyst (SBC) is a major radiological finding in knee osteoarthritis (OA), together with joint space narrowing, osteophyte and sclerotic bone formation. There is mounting evidence showing that SBC originates in the same region as bone marrow lesions (BMLs). The presence of subchondral bone cyst (SBCs), in conjunction with BMLs, was associated with the severity of pain, and was able to predict tibial cartilage lolume loss and risk of joint replacement surgery in knee OA patient. It is speculated that the presence of SBCs might increase intraosseous pressure of subchondral bone, and trigger active remodeling and high turnover of surrounding trabecular bone. Yet the exact effect of SBC on the structural and mechanical properties trabecular bone, which provides the support to overlying articular cartilage, remains to be elucidated. Therefore, this study aimed to investiate the microstructure and mechanical competence of trabecular bone of knee OA in presence or absence of SBC. Patients & Methods. A total of 20 postmenopausal women (54–87 years old) with the late-stage of primary knee OA were recruited in this study. Tibial plateau specimens were collected during joint replacement surgery. The samples were grouped for comparison according to presence or absences of SBC in micro-CT images. For micro-CT examination, a cylindrical volume of region of interest (VOI) of 10mm in diameter and 1mm in height was used to cover the trabecular bone region surrounding SBC, and then a cubic VOI of 3.5×3.5×3.5mm. 3. was applied in different anatomic locations of tibial plateau, such as medial, intermediate and lateral part, for the analyses of trabecular bone microstructure. Subsequently, two cylinders of subchondral bone specimens were drilled for each sample with micro-CT guidance from lateral portion of cystic wall along the direction of physiological loading of knee joint. The specimens were processed for micro-CT and mechanical testing using MTS 858 Mini Bionix sequentially. Each specimen was compressed in a longitudinal direction at a speed of 1mm/minute; the ultimate strength and modulus of the specimens were generated. Comparisons of microstructure and mechanical properties of trabecular bone were performed between two groups using student t test. The structure-mechanics relationship was also investigated using Pearson correlation. Results. The bone volume fraction (BV/TV, %) was significantly higher in knee OA specimens in presence of SBC (32±7%) in comparison with those in absence of SBC (16±5%, p<0.001). Meanwhile there were more plate-like trabecular bone surrounding SBC (0.78±0.61) than those without SBC (1.81±0.28, p<0.001), which was indicated by structure model index (0∼3). Furthermore, the trend in conversion of rod-like (close to 3) towards plate-like trabeculae was noticed in different locations of knee OA specimens with SBC formation. Trabecular bone around SBC presented higher modulus (73±22MPa) compared with those without SBC (45±29MPa, p=0.034). The stiffer trabecular bone in presence of SBC correlated with its plate-like morphology (r=0.696, p<0.001) as well as bone volume fraction (r=0.578, p=0.004). Conclusion. Presence of SBC was associated with conversion of trabeculae towards plate-like morphology together with the increase of mechanical competence in advanced knee OA