Advertisement for orthosearch.org.uk
Results 1 - 20 of 92
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 62 - 62
1 Dec 2022
Milligan K Rakhra K Kreviazuk C Poitras S Wilkin G Zaltz I Belzile E Stover M Smit K Sink E Clohisy J Beaulé P
Full Access

It has been reported that 60-85% of patients who undergo PAO have concomitant intraarticular pathology that cannot be addressed with PAO alone. Currently, there are limited diagnostic tools to determine which patients would benefit from hip arthroscopy at the time of PAO to address intra-articular pathology. This study aims to see if preoperative PROMs scores measured by IHOT-33 scores have predictive value in whether intra-articular pathology is addressed during PAO + scope. The secondary aim is to see how often surgeons at high-volume hip preservation centers address intra-articular pathology if a scope is performed during the same anesthesia event. A randomized, prospective Multicenter trial was performed on patients who underwent PAO and hip arthroscopy to treat hip dysplasia from 2019 to 2020. Preoperative PROMs and intraoperative findings and procedures were recorded and analyzed. A total of 75 patients, 84% Female, and 16% male, with an average age of 27 years old, were included in the study. Patients were randomized to have PAO alone 34 patients vs. PAO + arthroscopy 41 patients during the same anesthesia event. The procedures performed, including types of labral procedures and chondroplasty procedures, were recorded. Additionally, a two-sided student T-test was used to evaluate the difference in means of preoperative IHOT score among patients for whom a labral procedure was performed versus no labral procedure. A total of 82% of patients had an intra-articular procedure performed at the time of hip arthroscopy. 68% of patients who had PAO + arthroscopy had a labral procedure performed. The most common labral procedure was a labral refixation which was performed in 78% of patients who had a labral procedure performed. Femoral head-neck junction chondroplasty was performed in 51% of patients who had an intra-articular procedure performed. The mean IHOT score was 29.3 in patients who had a labral procedure performed and 33.63 in those who did not have a labral procedure performed P- value=0.24. Our findings demonstrate preoperative IHOT-33 scores were not predictive in determining whether intra-articular labral pathology was addressed at the time of surgery. Additionally, we found that if labral pathology was addressed, labral refixation was the most common repair performed. This study also provides valuable information on what procedures high-volume hip preservation centers are performing when performing PAO + arthroscopy


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 61 - 61
1 May 2016
Jenny J Honecker S Diesinger Y
Full Access

INTRODUCTION. One of the main goals of total knee arthroplasty (TKA) is to restore an adequate range of motion. The posterior femoral offset (PFO) may have a significant influence on the final flexion angle after TKA. The purpose of the present study was to compare the conventional, radiologic measurement of the PFO before and after TKA to the intra-operative, navigated measurement of the antero-posterior femoral dimension before and after TKA implantation. MATERIAL. 100 consecutive cases referred for end-stage knee osteo-arthritis have been included. Inclusion criteria were the availability of pre-TKA and post-TKA lateral X-rays and a navigated TKA implantation. There was no exclusion criterion. METHODS. Pre-TKA and post-TKA digital lateral X-rays were performed with fluoroscopic control of the superposition of both femoral. The PFO was defined as the distance between the anterior femoral cortex and the most posterior point of the femoral condyles (figure 1). The TKA was implanted with help of a navigation system. The standard navigated procedure involves a navigated palpation of the anterior femoral cortex just proximal to the trochlea (figure 2) and a navigated palpation of the most posterior point of both femoral condyles (figure 3), allowing computation of the pre-TKA navigated PFO. The post-TKA PFO was calculated according to the the antero-posterior position of the prosthetic trochlea in comparison to the anterior femoral cortex and the size of the femoral implant. Pre-TKA and post-TKA radiologic and navigated measurements of the PFO were compared with a paired Student t-test and calculation of the coefficient of linear correlation. The coherence between the data was analyzed according to Bland-Altman. The radiologic and navigated PFO changes were compared with a paired Student t-test and calculation of the coefficient of linear correlation. The sample size was calculated to allow detecting a 3 mm difference at a 0.05 level of significance and a power of 0.90. All statistical tests were performed at a 0.05 level of significance. RESULTS. The mean paired difference between pre-TKA radiologic and navigated measurement was 3.8 mm ± 4.1 mm (range, −5.2 to 17.9 mm) (p<0.001). There was a significant moderate positive correlation between both measurements (R² = 0.41, p<0.001). There was a good coherence between both measurements (R² = 0.04). The mean paired difference between post-TKA radiologic and navigated measurement was 5.9 mm ± 4.8 mm (range, −24.0 to 16.9 mm) (p<0.001). There was a significant moderate positive correlation between both measurements (R² = 0.51, p<0.001). There was a poor coherence between both measurements (R² = 0.11). The mean paired radiologic PFO change was 1.5 mm ± 5.2 mm. The mean paired navigated PFO change was −0.9 mm ± 4.0 mm (range, −14.0 to 12.2 mm) (p<0.001). There was a significant weak positive correlation between both measurements (R² = 0.21, p<0.001). There was a good coherence between both measurements (R² = 0.002). DISCUSSION. We observed a significant difference between radiologic and navigated results. This difference is likely to be clinically significant. CONCLUSION. Radiological measurement of the femoral offset is not reliable either before or after TKA


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 17 - 17
1 Mar 2021
Stephens T Goetz T Glaris Z
Full Access

Ulnocarpal impaction (UCI) is a common cause of ulnar-sided wrist pain. UCI typically occurs in wrists with positive ulnar variance, which causes altered loading mechanics between the ulnar head, lunate and triquetrum. However, many individuals with positive ulnar variance never develop UCI, and some with neutral or negative ulnar variance do experience UCI. This suggests that other variables contribute to the development of UCI. Suspected culprits include lunate morphology, and dynamic changes with loaded (grip) pronation. If these anatomic variations are contributing to UCI, we expect them to influence functional impairment scores. Therefore, the objective of this study was to evaluate the relationship between radiographic parameters and pre-surgical upper extremity patient-rated outcomes scores (PROS) in patients with a diagnosis of UCI. Retrospective cohort study of patients undergoing ulnar shortening osteotomy or arthroscopic wafer procedure for UCI. Data derived from prospectively collected departmental database that captured demographic, clinical, functional and radiographic information. Radiographic parameters evaluated were: lunate morphology [presence vs. absence of hamate facet; Antuna-Zapico (A-Z) classification], and dynamic changes on grip view [difference in lunate-ulnar head distance (LUD); difference in lunate uncovering index (LUI)]. PROS assessed were QuickDASH and Patient-Rated Wrist Evaluation (PRWE) scores, collected at patient enrolment. ANOVA was used to assess for differences in PROS between A-Z classification groups. Student's t-test was used to assess for differences in PROS based on presence/absence of a hamate facet. Regression analysis evaluated a relationship between change in LUD with grip and PROS, and change in LUI with grip and PROS. Preliminary analysis included 23 wrists, with a mean patient age of 48.9 years [standard deviation (SD) 14.5 years]. Forty-eight percent were male, and the dominant limb was involved in 52.2% of cases. Average QuickDASH and PRWE scores at enrolment were 50.9 (SD 22.2) and 62.2 (SD 22.0), respectively. Assessment of radiographs revealed 17 patients (73.9%) without a hamate facet. Five patients (21.7%) had A-Z Type I lunate morphology, and nine (39.1%) had Type II and Type III morphology, respectively. ANOVA revealed no differences in enrolment QuickDASH (p = 0.185) or PRWE (p = 0.256) scores between A-Z classification groups. Similarly, Student's t-test found no difference based on presence/absence of a hamate facet (QuickDASH p = 0.594; PRWE p = 0.573). Regression analysis revealed no relationship between change in LUD with grip and PROS (QuickDash R2 = 0.020, p = 0.619; PRWE R2 = 0.009, p = 0.733), and no relationship between change in LUI with grip and PROS (QuickDash R2 = 0.000, p = 0.913; PRWE R2 = 0.010, p = 0.722). Preliminary results suggest no relationship between A-Z classification lunate morphology, presence/absence of a hamate facet, change in LUD, or change in LUI and pre-surgical PROS. It is unclear if our findings represent the true relationship between these radiographic parameters and PROS, or reflect our preliminary sample size. Data analysis is ongoing to add clarity to this question


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 87 - 87
1 Jul 2020
Ashjaee N Johnston G Johnston J
Full Access

Distal radius fracture is one of the most common fractures in older women (∼70,000 cases annually in Canada). Treatment of this fracture has been shifting toward surgery (mainly volar locking plate (VLP) technology), which significantly enhances surgeon's ability to maintain correction. However, current surgical outcomes are far from perfect. There is a need for an implant which maintains the corrected position (reduction), minimizes soft tissue disruption, and is technically easy to perform. A novel internal, composite-based implant was designed to achieve these ends. It is unclear, however, whether this novel implant offers similar fracture fixation as the VLP. As such, the objective of this research was to evaluate the fracture stability (assessed by calculating change in fracture length) of the novel implant and VLP under cyclic fatigue loading. Specimens: Seven radius specimens derived from older female cadavers (mean = 82.3 years, SD = 11.3 years) were used for the experiment. Preparation: A standardized dorsal wedge was removed from the cortex. The distance from the proximal and distal transverse osteotomies was 10 mm and was positioned 20 mm proximal to the tip of the radial styloid. The osteotomy removed all load-bearing capabilities of bone, equivalent to a worst-case-scenario for DRF fixation. Simulated Loading: The proximal end of the radii was potted (fixed) and positioned in a material testing system. To mimic natural loading conditions, hands were cycled between −30°/30° flexion/extension, at 0.5 Hz, for 2000 cycles, while tension load was applied to the tendons (25-N constant force per tendon, 100-N in total). Mechanical testing outcomes: A position tracking sensor used to measure change in fracture length. This change, as a function of number of cycles, was used to assess implant resistance to fatigue loading. Statistical Analysis: A paired student t-test was used to compare the change in fracture length. Level of significance was determined as 5% (p < 0.05). Changes in fracture fracture-length for both the novel implant and plate is shown in Table 1. The paired t-test indicated significant differences between the two groups in terms of change in fracture length (p = 0.026). The outcome of the novel implant ranged from very stable (change in fracture-length = 0.01 mm) to highly un-stable (2.88 mm). We believe the reason for this variance, at least in part, originates from the surgical procedures. Presumably, given that one very strong stabilization (0.01 mm) and one acceptable stabilization (0.37 mm) was obtained, future research directed towards surgical procedures may improve fracture stability. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 67 - 67
1 Jul 2020
Pelet S Pelletier-Roy R
Full Access

Surgeries for reverse total shoulder arthroplasty (RTSA) significantly increased in the last ten years. Initially developed to treat patients with cuff tear arthropathy (CTA) and pseudoparalysis, wider indications for RTSA were described, especially complex proximal humerus fractures. We previously demonstrated in patients with CTA a different sequence of muscular activation than in normal shoulder, with a decrease in deltoid activation, a significant increase of upper trapezius activation and slight utility of the latissimus dorsi. There is no biomechanical study describing the muscular activity in patients with RTSA for fractures. The aim of this work is to describe the in vivo action of RTSA in patients with complex fractures of the proximal humerus. We conducted an observational prospective cohort study comparing 9 patients with RTSA for complex humerus fracture (surgery more than 6 months, healed tuberosities and rehabilitation process achieved) and 10 controls with normal shoulder function. Assessment consisted in a synchronized analysis of range of motion (ROM) and muscular activity on electromyography (EMG) with the use of 7 bipolar cutaneous electrodes, 38 reflective markers and 8 motion-recording cameras. Electromyographic results were standardized and presented in muscular activity (RMS) adjusted with maximal isometric contractions according to the direction tested. Five basic movements were evaluated (flexion, abduction, neutral external rotation, external rotation in 90° of abduction and internal rotation in 90° of abduction). Student t-test were used for comparative descriptive analysis (p < 0,05). The overall range of motion with RTSA is very good, but lower than the control group: flexion 155.6 ± 10 vs 172.2 ± 13.9, p<0.05, external rotation at 90° 55.6 ± 25 vs 85.6 ± 8.8, p<0,05, internal rotation at 90° 37.8 ± 15.6 vs 52.2 ± 12, p<0,05. The three heads of the deltoid are more stressed during flexion and abduction in the RTSA group (p. The increased use of the 3 deltoid chiefs does not support the hypothesis proposed by Grammont when the RTSA is performed for a complex proximal humerus fracture. This can be explained by the reduced dispalcement of the rotation center of the shoulder in these patients compared to those with CTA. These patients also didn't present shoulder stiffness before the fracture. The maximal muscle activity of the trapezius in flexion and of the latissimus dorsi in flexion and abduction had not been described to date. These new findings will help develop better targeted rehabilitation programs. In addition, the significant role of the latissimus dorsi must question the risks of its transfer (L'Episcopo procedure) to compensate for external rotation deficits


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 140 - 140
1 Feb 2020
Fassihi S Kraekel SM Soderquist MC Unger A
Full Access

Introduction. Enhanced Recovery After Surgery (ERAS) is a multi-disciplinary approach for establishing procedure–specific, evidence-based perioperative protocols to optimize patient outcomes. ERAS evidence is predominantly for non-orthopaedic procedures. We review the impact of ERAS protocol implementation on total joint arthroplasty (TJA) outcomes at our institution. Methods. All primary total hip and knee arthroplasties performed one year before and after ERAS implementation were identified by current procedural terminology code. Length of stay (LOS), disposition, readmission and opioid usage were analyzed before and after ERAS implementation and statistically analyzed with student t-test and chi-square test. Results. 2105 total patients were identified (967 THA, 494 pre-ERAS and 473 post-ERAS;1138 TKA, 575 pre-ERAS and 563 post-ERAS). TKA. After ERAS implementation, opioid consumption decreased for hospital day one (45.5MME to 36.2MME; p=0.000) and overall hospitalization (101.9MME to 83.9MME; p =0.000). Average LOS decreased (73.28hrs to 66.44hrs; p=0.000), blood transfusion rate trended down (3.3% to 1.95%; p=0.155), and disposition to home over skilled nursing facility increased (57.8% to 71.6%; p=0.000). Unplanned return-to-hospital encounters were unchanged (13.22% to 12.79%; p=0.8504). 30-day and 90-day readmission rates decreased (7.30% to 3.02%; p=0.0020 and 8.5% to 4.8%; p=0.0185, respectively). THA. After ERAS implementation, opioid consumption decreased for hospital day one (49.5MME to 35.4MME; p=0.000) and overall hospitalization (79.5MME to 59.5MME; p=0.000). Average LOS decreased (57.84hrs to 51.87hrs; p=0.011), blood transfusion rate was unchanged (4.25% to 3.81%; p=0.725), and disposition to home over skilled nursing facility increased (80.4% to 82.5%; p= 0.022). Unplanned return-to-hospital encounters were unchanged (8.51% to 8.88%; p=0.8486). Readmission trended up during postoperative days 0–30 and trended down during postoperative days 31–90. (1.42% to 2.96%; p=0.1074) and (1.21% to 0.85%; p=0.5748), respectively. Conclusion. ERAS protocols reduce postoperative opioid consumption, decrease hospital LOS, and increase patient disposition to home without adversely affecting short-term readmission rates


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 105 - 105
1 Dec 2022
Hébert S Charest-Morin R Bédard L Pelet S
Full Access

Despite the current trend favoring surgical treatment of displaced intra-articular calcaneal fractures (DIACFs), studies have not been able to demonstrate superior functional outcomes when compared to non-operative treatment. These fractures are notoriously difficult to reduce. Studies investigating surgical fixation often lack information about the quality of reduction even though it may play an important role in the success of this procedure. We wanted to establish if, amongst surgically treated DIACF, an anatomic reduction led to improved functional outcomes at 12 months. From July 2011 to December 2020, at a level I trauma center, 84 patients with an isolated DIACF scheduled for surgical fixation with plate and screws using a lateral extensile approach were enrolled in this prospective cohort study and followed over a 12-month period. Post-operative computed tomography (CT) imaging of bilateral feet was obtained to assess surgical reduction using a combination of pre-determined parameters: Böhler's angle, calcaneal height, congruence and articular step-off of the posterior facet and calcaneocuboid (CC) joint. Reduction was judged anatomic when Böhler's angle and calcaneal height were within 20% of the contralateral foot while the posterior facet and CC joint had to be congruent with a step-off less than 2 mm. Several functional scores related to foot and ankle pathology were used to evaluate functional outcomes (American Orthopedic Foot and Ankle Score - AOFAS, Lower Extremity Functional Score - LEFS, Olerud and Molander Ankle Score - OMAS, Calcaneal Functional Scoring System - CFSS, Visual Analog Scale for pain - VAS) and were compared between anatomic and nonanatomic DIAFCs using Student's t-test. Demographic data and information about injury severity were collected for each patient. Among the 84 enrolled patients, 6 were excluded while 11 were lost to follow-up. Thirty-nine patients had a nonanatomic reduction while 35 patients had an anatomic reduction (47%). Baseline characteristics were similar in both groups. When we compared the injury severity as defined by the Sanders’ Classification, we did not find a significant difference. In other words, the nonanatomic group did not have a greater proportion of complex fractures. Anatomically reduced DIACFs showed significantly superior results at 12 months for all but one scoring system (mean difference at 12 months: AOFAS 3.97, p = 0.12; LEFS 7.46, p = 0.003; OMAS 13.6, p = 0.002, CFSS 7.5, p = 0.037; VAS −1.53, p = 0.005). Univariate analyses did not show that smoking status, worker's compensation or body mass index were associated with functional outcomes. Moreover, fracture severity could not predict functional outcomes at 12 months. This study showed superior functional outcomes in patients with a DIACF when an anatomic reduction is achieved regardless of the injury severity


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 70 - 70
1 Dec 2022
Hébert S Charest-Morin R Bédard L Pelet S
Full Access

Despite the current trend favoring surgical treatment of displaced intra-articular calcaneal fractures (DIACFs), studies have not been able to demonstrate superior functional outcomes when compared to non-operative treatment. These fractures are notoriously difficult to reduce. Studies investigating surgical fixation often lack information about the quality of reduction even though it may play an important role in the success of this procedure. We wanted to establish if, amongst surgically treated DIACF, an anatomic reduction led to improved functional outcomes at 12 months. From July 2011 to December 2020, at a level I trauma center, 84 patients with an isolated DIACF scheduled for surgical fixation with plate and screws using a lateral extensile approach were enrolled in this prospective cohort study and followed over a 12-month period. Post-operative computed tomography (CT) imaging of bilateral feet was obtained to assess surgical reduction using a combination of pre-determined parameters: Böhler's angle, calcaneal height, congruence and articular step-off of the posterior facet and calcaneocuboid (CC) joint. Reduction was judged anatomic when Böhler's angle and calcaneal height were within 20% of the contralateral foot while the posterior facet and CC joint had to be congruent with a step-off less than 2 mm. Several functional scores related to foot and ankle pathology were used to evaluate functional outcomes (American Orthopedic Foot and Ankle Score - AOFAS, Lower Extremity Functional Score - LEFS, Olerud and Molander Ankle Score - OMAS, Calcaneal Functional Scoring System - CFSS, Visual Analog Scale for pain – VAS) and were compared between anatomic and nonanatomic DIAFCs using Student's t-test. Demographic data and information about injury severity were collected for each patient. Among the 84 enrolled patients, 6 were excluded while 11 were lost to follow-up. Thirty-nine patients had a nonanatomic reduction while 35 patients had an anatomic reduction (47%). Baseline characteristics were similar in both groups. When we compared the injury severity as defined by the Sanders’ Classification, we did not find a significant difference. In other words, the nonanatomic group did not have a greater proportion of complex fractures. Anatomically reduced DIACFs showed significantly superior results at 12 months for all but one scoring system (mean difference at 12 months: AOFAS 3.97, p = 0.12; LEFS 7.46, p = 0.003; OMAS 13.6, p = 0.002, CFSS 7.5, p = 0.037; VAS −1.53, p = 0.005). Univariate analyses did not show that smoking status, worker's compensation or body mass index were associated with functional outcomes. Moreover, fracture severity could not predict functional outcomes at 12 months. This study showed superior functional outcomes in patients with a DIACF when an anatomic reduction is achieved regardless of the injury severity


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 53 - 53
1 Oct 2022
Cardona CG Omiste I Johnson MCB Veloso M Gómez L Cisneros BE Camarena JHN García DB Font-Vizcarra L
Full Access

Aim. Acute post-surgical infection is one of the most serious complications after instrumented thoracolumbar fusion with an incidence of 0.7%-12%. Acute infection can lead to an increase in morbidity, mortality, and economic costs for the healthcare system. The main objective of our study was to determine the variables associated with a higher risk of acute infection after thoracolumbar instrumentation in our center. Methods. We conducted an observational case-control study including instrumented fusions of the thoracolumbar spine performed between 2015 and 2021 at our institution. We included patients with thoracolumbar fusions after a fracture or for the treatment of degenerative pathology. We analyzed demographic variables related to the surgical procedure, the causative microorganism of infection, the outcome of infection treatment, and complications. We performed a descriptive analysis of all variables and a univariate comparison of cases and controls. The dichotomous variables were compared using the Fisher test, while the quantitative variables were compared using the Student's T-test. A p-value of <0.05 is taken into account to consider the statistical significance. SPSS v25 Windows program was used for statistical analyses. Results. 455 patients were included, 53% were male with a mean age of 60 years. 35% of patients had a BMI (Body Mass Index) >30, 21.1% were classified as ASA (American Society of Anesthesiologists) >3, 15.8% were diabetic, and 2.6% were under chronic corticosteroid treatment. In 34.1% of the fusions, the procedure lasted more than 3 hours. We identified 26 post-surgical acute infections (5.7%). Patients with an infection had a higher prevalence of diabetes (14.7% vs 34.6% p=0.012), chronic corticosteroid treatment (2.1% vs 11.5% p=0.026), and a higher percentage of surgeries with duration > 3 hours (32.4% vs. 61.1%, p=0.019). A trend towards significance was also observed in patients classified as ASA >3 (20.3% vs. 34.6%, p=0.088), and BMI >30 (33.8% vs. 53.8%, p=0.054). No significant differences were observed in the rest of the variables studied. The most frequent causative microorganism was S.epidermidis (38%), followed by S.aureus (34%) and polymicrobial infections (34%). Conclusions. There is a significant increase in infection in diabetic patients, patients with chronic corticosteroid treatment, and in surgeries lasting > 3 hours


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 50 - 50
1 Dec 2019
Ullmark G Sotiriou D Stigbrand H
Full Access

Introduction. Periprosthetic joint infection (PJI) represents the costliest complication in Orthopedics. Studies of mixing vancomycin to bone graft at Impaction Bone Grafting (IBG) have shown high local concentration for 3 weeks. Patients and methods. 55 consecutive revisions PJI, age 68 (SD 10.9), (9 one-stage and 46 two-stage) were retrospectively analyzed. All cases were revised using IBG. Most cases had vancomycin mixed in graft or added locally in joint. All had bone cement containing Gentamycin and Vancomycin. Follow up 2–16 years included clinical Merle d'Aubigne-Postel score, radiology and laboratory tests. We analyzed surgical time, bleeding, hospitalization time, infection eradication and prosthetic survival for one- and two-stage revision procedures. One patient was lost to follow up and 6 died (2 one- and 4 2-stage) before 2 years. Values are mean and SD. Analyses done by students t-test. Results. Preoperatively scores for 1- and 2-stage groups were 11.7 (0.79) and 10.2 (1.27) respectively. Follow up scores were 17.5 (0.38) and 15.9 (0.73) respectively. Total intra-operative blood loss (ml) for one- and two-stage procedures were 1638 (780) and 2764 (828) respectively p<0.05. Total surgery time (minutes): 238 (206) and 409 (108) respectively p<0.05. Total hospitalization time (days): 13 (6.2) and 34 (13) p<0.05. Radiology at follow-up showed no signs of PJI, signs of mechanical loosening in one. There were no persistent or new PJI, no revision for mechanical loosening. Two revision for any reason in the 2-stage and one in the 1-stage group. Five reoperations without component exchange for periprosthetic fracture, all in the 2-stage group. Conclusion. No mechanical loosening and no persistent or new PJI are favourable results. Blood loss, hospitalization- and surgery-time were substantially increased for the two-stage group. Muscle atrophy, osteoporotic development and decrease general physical condition are all well-known side effects of two-stage procedure. Revision one-stage hip PJI using IBG avoids increased suffering and resources connected to the two-stage procedure. Literatures have not shown eradication of PJI, to be clearly superior after two- compared to one-stage procedures. Reconstitution of bone defects and the possibility of very high local antibiotic concentration are substantial advantages when using IBG. We recommend a careful one-stage IBG procedure using antibiotic loaded graft for none “difficult to treat” cases


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 35 - 35
1 Feb 2020
Takegami Y Habe Y Seki T
Full Access

Introduction. Acetabular component loosening has been one of the factors of revision of total hip arthroplasty (THA). Inadequate mechanical fixation or load transfer may contribute to this loosening process. Several reports showed the load transfer in the acetabulum by metal components. However, there is no report about the influence of the joint surface on the load transfer. We developed a novel acetabular cross-linked polyethylene (CLPE) liner with graft biocompatible phospholipid polymer(MPC) on the surface. The MPC polymer surface had high lubricity and low friction. We hypothesized the acetabular component with MPC polymer surface (MPC-CLPE) may reduce load transfer in the acetabulum compared to that of the by CLPE acetabular component without MPC. Methods. We fixed the three cement cup with MPC-CLPE (Group M; sample No.1–3) and three cement cup with CLPE (Group C; sample No.4–6) placed in the synthetic bone block with bone cement with a 0.10mm thick arc-shaped piezoresistive force sensor, which can measure the dynamic load transfer(Tekscan K-scan 4400; Boston). (Fig 1) A hip simulator (MTS Systems Corp., Eden Prairie, MN) was used for the load transfer test performed according to the ISO Standard 14242-1. Both groups had same inner and outer diameter s of 28 and 50mm, respectively. A Co–Cr alloy femoral head with a diameter of 28 mm (K-MAXs HH-02; KYOCERA Medical Corp.) was used as the femoral component. A biaxial rocking motion was applied to the head/cup interface via an offset bearing assembly with an inclined angle of +20. Both the loading and motion were synchronized at 1 Hz. According to the double-peaked Paul-type physiologic hip load, the applied peak loads were 1793 and 2744 N described in a previous study. The simulator was run 3 cycles. We recorded both the peak of the contact force and the accumulation of the six times load in total. Secondly, we calculated the mean change of the load transfer. We used the Student t-test. P value < 0.05 was used to determine statistical significance. We used EZR for statistical analysis. Results. The mean of total accumulation of the load transfer in the group M is significantly lower than that of in the group C. (7037±508 N vs 11019±1290 N, P<0.0001). The peak of load in the group M was also significantly lower than that in the group C. (1024±166 N vs 1557±395 N) (Fig 2)The mean of the change of the load transfer in the group M is significantly lower than that of in the group C. (2913±112 N vs 4182±306 N) (Fig 3). Conclusion. The acetabular component with MPC surface could reduce and prevent the radical load transfer change toward to the acetabulum compared to CLPE acetabular component without MPC. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 48 - 48
1 Dec 2022
Yee N Iorio C Shkumat N Rocos B Ertl-Wagner B Green A Lebel D Camp M
Full Access

Neuromuscular scoliosis patients face rates of major complications of up to 49%. Along with pre-operative risk reduction strategies (including nutritional and bone health optimization), intra-operative strategies to decrease blood loss and decrease surgical time may help mitigate these risks. A major contributor to blood loss and surgical time is the insertion of instrumentation which is challenging in neuromuscular patient given their abnormal vertebral and pelvic anatomy. Standard pre-operative radiographs provide minimal information regarding pedicle diameter, length, blocks to pedicle entry (e.g. iliac crest overhang), or iliac crest orientation. To minimize blood loss and surgical time, we developed an “ultra-low dose” CT protocol without sedation for neuromuscular patients. Our prospective quality improvement study aimed to determine: if ultra-low dose CT without sedation was feasible given the movement disorders in this population; what the radiation exposure was compared to standard pre-operative imaging; whether the images allowed accurate assessment of the anatomy and intra-operative navigation given the ultra-low dose and potential movement during the scan. Fifteen non-ambulatory surgical patients with neuromuscular scoliosis received the standard spine XR and an ultra-low dose CT scan. Charts were reviewed for etiology of neuromuscular scoliosis and medical co-morbidities. The CT protocol was a high-speed, high-pitch, tube-current modulated acquisition at a fixed tube voltage. Adaptive statistical iterative reconstruction was applied to soft-tissue and bone kernels to mitigate noise. Radiation dose was quantified using reported dose indices (computed tomography dose index (CTDIvol) and dose-length product (DLP)) and effective dose (E), calculated through Monte-Carlo simulation. Statistical analysis was completed using a paired student's T-test (α = 0.05). CT image quality was assessed for its use in preoperative planning and intraoperative navigation using 7D Surgical System Spine Module (7D Surgical, Toronto, Canada). Eight males and seven females were included in the study. Their average age (14±2 years old), preoperative Cobb angle (95±21 degrees), and kyphosis (60±18 degrees) were recorded. One patient was unable to undergo the ultra-low dose CT protocol without sedation due to a co-diagnosis of severe autism. The average XR radiation dose was 0.5±0.3 mSv. Variability in radiographic dose was due to a wide range in patient size, positioning (supine, sitting), number of views, imaging technique and body habitus. Associated CT radiation metrics were CTDIvol = 0.46±0.14 mGy, DLP = 26.2±8.1 mGy.cm and E = 0.6±0.2 mSv. CT radiation variability was due to body habitus and arm orientation. The radiation dose differences between radiographic and CT imaging were not statistically significant. All CT scans had adequate quality for preoperative assessment of pedicle diameter and orientation, obstacles impeding pedicle entry, S2-Alar screw orientation, and intra-operative navigation. “Ultra-low dose” CT scans without sedation were feasible in paediatric patients with neuromuscular scoliosis. The effective dose was similar between the standard preoperative spinal XR and “ultra-low dose” CT scans. The “ultra-low dose” CT scan allowed accurate assessment of the anatomy, aided in pre-operative planning, and allowed intra-operative navigation despite the movement disorders in this patient population


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 68 - 68
1 Dec 2022
Yee N Lorio C Shkumat N Rocos B Ertl-Wagner B Green A Lebel D Camp M
Full Access

Neuromuscular scoliosis patients face rates of major complications of up to 49%. Along with pre-operative risk reduction strategies (including nutritional and bone health optimization), intra-operative strategies to decrease blood loss and decrease surgical time may help mitigate these risks. A major contributor to blood loss and surgical time is the insertion of instrumentation which is challenging in neuromuscular patient given their abnormal vertebral and pelvic anatomy. Standard pre-operative radiographs provide minimal information regarding pedicle diameter, length, blocks to pedicle entry (e.g. iliac crest overhang), or iliac crest orientation. To minimize blood loss and surgical time, we developed an “ultra-low dose” CT protocol without sedation for neuromuscular patients. Our prospective quality improvement study aimed to determine:. if ultra-low dose CT without sedation was feasible given the movement disorders in this population;. what the radiation exposure was compared to standard pre-operative imaging;. whether the images allowed accurate assessment of the anatomy and intra-operative navigation given the ultra-low dose and potential movement during the scan. Fifteen non-ambulatory surgical patients with neuromuscular scoliosis received the standard spine XR and an ultra-low dose CT scan. Charts were reviewed for etiology of neuromuscular scoliosis and medical co-morbidities. The CT protocol was a high-speed, high-pitch, tube-current modulated acquisition at a fixed tube voltage. Adaptive statistical iterative reconstruction was applied to soft-tissue and bone kernels to mitigate noise. Radiation dose was quantified using reported dose indices (computed tomography dose index (CTDIvol) and dose-length product (DLP)) and effective dose (E), calculated through Monte-Carlo simulation. Statistical analysis was completed using a paired student's T-test (α= 0.05). CT image quality was assessed for its use in preoperative planning and intraoperative navigation using 7D Surgical System Spine Module (7D Surgical, Toronto, Canada). Eight males and seven females were included in the study. Their average age (14±2 years old), preoperative Cobb angle (95±21 degrees), and kyphosis (60±18 degrees) were recorded. One patient was unable to undergo the ultra-low dose CT protocol without sedation due to a co-diagnosis of severe autism. The average XR radiation dose was 0.5±0.3 mSv. Variability in radiographic dose was due to a wide range in patient size, positioning (supine, sitting), number of views, imaging technique and body habitus. Associated CT radiation metrics were CTDIvol = 0.46±0.14 mGy, DLP = 26.2±8.1 mGy.cm and E = 0.6±0.2 mSv. CT radiation variability was due to body habitus and arm orientation. The radiation dose differences between radiographic and CT imaging were not statistically significant. All CT scans had adequate quality for preoperative assessment of pedicle diameter and orientation, obstacles impeding pedicle entry, S2-Alar screw orientation, and intra-operative navigation. “Ultra-low dose” CT scans without sedation were feasible in paediatric patients with neuromuscular scoliosis. The effective dose was similar between the standard preoperative spinal XR and “ultra-low dose” CT scans. The “ultra-low dose” CT scan allowed accurate assessment of the anatomy, aided in pre-operative planning, and allowed intra-operative navigation despite the movement disorders in this patient population


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 98 - 98
1 Dec 2022
Yamaura L Monument M Skeith L Schneider P
Full Access

Surgical management for acute or impending pathologic fractures in metastatic bone disease (MBD) places patients at high-risk for post-operative venous thromboembolism (VTE). Due to the combination of malignancy, systemic cancer treatment, and surgical treatment, VTE-risk is increased 7-fold in patients with MBD compared to non-cancer patients undergoing the same procedure. The extent and duration of post-operative hypercoagulability in patients with MBD remains unknown and thromboprophylaxis guidelines were developed for non-cancer patients, limiting their applicability to address the elevated VTE-risk in cancer patients. Thrombelastography (TEG) analysis is a point-of-care test that measures clot formation, stabilization, and lysis in whole blood samples. The TEG parameter, maximal amplitude (MA), indicates clot strength and the threshold of ≥65 mm has been used to define hypercoagulability and predict VTE events in non-cancer patients requiring orthopaedic surgery. Therefore, this study aims to quantify the extent and duration of post-operative hypercoagulability in patients with MBD using serial TEG analysis. Consecutive adults (≥18 years) with MBD who required orthopaedic surgery for acute or impending pathologic fractures were enrolled into this single-centre, prospective cohort study. Serial TEG analysis was performed onsite using a TEG®6s haemostasis analyzer (Haemonetics Corporation, Boston, MA) on whole blood samples collected at seven timepoints: pre-operatively; on post-operative day (POD) 1, 3, and 5; and at 2-, 6-, and 12-weeks post-operatively. Hypercoagulability was defined as MA ≥65 mm. Participants received standardized thromboprophylaxis for four weeks and patient-reported compliance with thromboprophylaxis was recorded. VTE was defined as symptomatic DVT or PE, or asymptomatic proximal DVT, and all participants underwent a screening post-operative lower extremity Doppler ultrasound on POD3. Descriptive statistics were performed and difference between pre-operative MA values of participants with VTE versus no VTE was evaluated using Student's t-test (p≤0.05). Twenty-one participants (10 female; 47.6%) with a mean age of 70 ± 12 years were enrolled. Nine different primary cancers were identified amongst participants, with breast (23.8%), colorectal (19.0%), and lung cancer (14.3%) most frequently reported. Most participants (57.1%) were hypercoagulable pre-operatively, and nearly half remained hypercoagulable at 6- and 12-weeks post-operatively (47.1 and 46.7%, respectively). VTE occurred in 5 patients (23.8%) and mean MA was 68.1 ± 4.6 mm at the time of diagnosis. Mean pre-operative MA values were significantly higher (p=0.02) in patients who experienced VTE (68.9 ± 3.5 mm) compared to those who did not (62.7 ± 6.5 mm). VTE incidence was highest in the first week post-operatively, during which time four VTE events (80%) occurred. The proportion of patients in a hypercoagulable state increased at three consecutive timepoints, beginning on POD3 (85.0%), increasing on POD5 (87.5%), and peaking at 2-weeks post-operatively (88.9%). Current thromboprophylaxis guidelines do not consider cancer-associated risk factors that contribute to increased VTE incidence and prescription duration may be inadequate to address prolonged post-operative hypercoagulability in patients with MBD. The high rate of VTE events observed and sustained hypercoagulable state indicate that thromboprophylaxis may be prematurely terminated while patients remain at high risk for VTE. Therefore, extending thromboprophylaxis duration beyond 4-weeks post-operatively in patients with MBD warrants further investigation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 92 - 92
1 Feb 2020
Chun K Kwon H Kim K Chun C
Full Access

Purpose. The aim of this study was to compare the clinical outcomes of the revision TKA in which trabecular metal cones and femoral head allografts were used for large bone defect. Method. Total 53 patients who have undergone revision TKA from July 2013 to March 2017 were enrolled in this study. Among them, 24 patients used trabecular metal cones, and 29 patients used femoral head allografts for large bone defect. There were 3 males and 21 females in the metal cone group, while there were 4 males and 25 females in the allograft group. The mean age was 70.2 years (range, 51–80) in the femoral head allograft group, while it was 79.1 years (range, 73–85) in the metal cone group. Bone defect is classified according to the AORI classification and clinical outcomes were evaluated with Visual Analogue Scale (VAS), Hospital Special Surgery-score (HSS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Knee Injury and Osteoarthritis Outcome Score (KOOS), and ROM. Operation time was also evaluated. We used radiographs to check complications such as migration or loosening. We took follow-up x-rays and 3D CT of the patients, to assess the mean bone union period. Shapiro-Wilk test was done to check normality and Student T-test and Mann Whitney U-test were done for comparison between two groups. Result. The mean follow-up period was 3 .75 years (Range; 2.1 ∼ 5.75). The pre-op scores did not show significant difference. The mean VAS in the allograft and trabecular metal cone groups was 2.1 ± 0.87 and 1.8 ± 0.53, respectively (p = 0.16). The mean HSS score were 76.3 ± 5.51 and 79.2 ± 4.12 respectively (p = 0.13) and the mean WOMAC scores were 15.1 ± 3.25 and 14.8 ± 3.31 respectively (p = 0.06), and the mean KOOS scores were 27.8 ± 4.77 and 25.5 ± 4.84, respectively (p = 0.07). The mean ROM ranges were 100.6 ± 17.54 and 101.3 ± 19.22, respectively (p = 0.09). But the mean operation time of the allograft and trabecular metal cone groups was 137 minutes (Range; 111–198) and 102minutes (Range; 93 −133) (p=0.02) respectively, which showed statistical significance. In follow-up x-rays, no migration or loosening of the implants, osteolysis and other complications were found in both groups. In follow-up 3D CT, osteointegration was seen at the trabecular metal cone site, host bone being interpreted to the host bone. The allograft group showed fibrous and stable union in follow-up 3D CT. Conclusion. According to this study, in case of revision TKA with large bone defect, using whether allograft or trabecular metal cones did not affect the clinical outcomes. However, operation time was significantly shorter in trabecular metal cone group, therefore, in patients with poor general condition along with severe underlying diseases, usage of trabecular metal cone would be a better choice to shorten operation time and ease postoperative care. Keywords. Revision TKA, metal cone, allograft, bone defect. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 13 - 13
1 Apr 2019
Jenny JY Saragaglia D
Full Access

OBJECTIVES. The use of a mobile bearing has been suggested to decrease the rate of patellar complications after total knee arthroplasty (TKA). However, to resurface or retain the native patella remains debated. Few long-term results have been documented. The present retrospective study was designed to evaluate the long-term (more than 10 years) results of mobile bearing TKAs on a national scale, and to compare pain results and survivorship according to the status of the patella. The primary hypothesis of this study was that the 10 year survival rate of mobile bearing TKAs with patella resurfacing will be different from that of mobile bearing TKAs with native patella retaining. METHODS. All patients operated on between 2001 and 2004 in all participating centers for implantation of a TKA (whatever design used) were eligible for this study. Usual demographic and peri-operative items have been recorded. All patients were contacted after the 10 year follow-up for repeat clinical examination (Knee Society score (KSS), Oxford knee questionnaire). Patients who did not return were interviewed by phone call. For patients lost of follow-up, family or general practitioner was contacted to obtain relevant information about prosthesis survival. TKAs with resurfaced patella and TKAs with retained native patella were paired according to age, gender, body mass index and severity of the coronal deformation (with steps of 5°). Pain score, KSS and Oxford knee score were compared between two groups with a Student t-test at a 0.05 level of significance. Survival curve was plotted according to the actuarial technique, using the revision for mechanical reason as end-point. The influence of the patella status was assessed with a logrank test at a 0.05 level of significance. RESULTS. 1,604 TKAs were implanted during the study time-frame. 849 cases could be paired according to age, gender, BMI and severity of the pre-operative coronal deformation (2/1 ratio) into two groups: resurfaced patella (496 cases) and retained patella (243 cases). There was no difference in any baseline criteria between both groups. 150 patients deceased before the 10 year follow up (18%). Final follow-up was obtained for 489 cases (58%). 31 reoperations (prosthesis exchange or patellofemoral revision) were performed during the study time frame (4%), with 17 reoperations for mechanical reasons (3%). KSS and Oxford knee score were significantly higher for TKAs without patella resurfacing, there was a significant difference between the 13 year survival rates of TKAs with resurfaced patella (97%) and TKAs with retained native patella (93%). CONCLUSIONS. The primary hypothesis was confirmed: 10 year survival rate of mobile bearing TKAs with patella resurfacing was better than mobile bearing TKAs with native patella retaining. Patella resurfacing may lead to a better survival after mobile bearing TKA. However, the clinical results were better after patella resurfacing when the index TKA was not revised


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 29 - 29
1 Dec 2021
Visperas A Piuzzi N Ju M Wickramasinghe S Anis H Milbrandt N Tsai YH Klika AK Barsoum W Samia A Higuera-Rueda C
Full Access

Aim. Periprosthetic joint infection (PJI) is a devastating complication of total joint arthroplasty. While research has focused on developing better tests for disease diagnosis, treatment options have stayed relatively constant over the years with high failure rates ranging from 30%–50% and are due in part to the protective biofilm produced by some bacterial species. Current treatment options are compromised by the presence of biofilm, emphasizing the need for novel treatment strategies to be developed. Our group has developed a novel treatment (PhotothermAA) which has demonstrated in vitro its ability to target bacterial biofilm. The purpose of this study was to test this PhotothermAA technology in vivo in a rabbit model of PJI for its efficacy in eradicating biofilm. Method. Rabbits were fitted with a titanium implant into the tibial plateau and inoculated with 5×10. 6. CFU Xen36 (luminescent Staphylococcus aureus). At two weeks, rabbits underwent irrigation and debridement and treatment with PhotothermAA gel for two hours and subsequently laser heated using an 808 nm laser for 10 minutes. Gel was washed out and implant was removed for quantitative biofilm coverage analysis via scanning electron microscopy (SEM, n=3 for control and n=2 for PhotothermAA treated). Periprosthetic tissue was collected before and after treatment for toxicity studies via hemotoxylin and eosin (H&E) staining and scored for necrosis by three blinded reviewers (n=5 per group). Student's t-test was used for statistical analysis. Results. Implants isolated after PhotothermAA gel treatment had less biofilm coverage on the surface of the implant compared to non-treated control via SEM analysis (36.9% vs. 55.2%, p<0.14). PhotothermAA gel treatment and subsequent laser treatment was not harmful to surrounding tissue as no increase in necrotic tissue was observed. Conclusions. PhotothermAA gel and laser treatment safely decreases biofilm coverage on infected knee implants in a rabbit PJI model


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 29 - 29
1 Aug 2013
Rambani R Viant W Ward J Mohsen A
Full Access

Surgical training has been greatly affected by the challenges of reduced training opportunities, shortened working hours, and financial pressures. There is an increased need for the use of training system in developing psychomotor skills of the surgical trainee for fracture fixation. The training system was developed to simulate dynamic hip screw fixation. 12 orthopaedic senior house officers performed dynamic hip screw fixation before and after the training on training system. The results were assessed based on the scoring system that included the amount of time taken, accuracy of guide wire placement and the number of exposures requested to complete the procedure. The result shows a significant improvement in amount of time taken, accuracy of fixation and the number of exposures after the training on simulator system. This was statistically significant using paired student t-test (p-value <0.05). Computer navigated training system appears to be a good training tool for young orthopaedic trainees The system has the potential to be used in various other orthopaedic procedures for learning of technical skills aimed at ensuring a smooth escalation in task complexity leading to the better performance of procedures in the operating theatre


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 81 - 81
1 Mar 2017
Pelet S Ratte-Larouche M
Full Access

Introduction. This paper describes the kinetic and electromyographic contribution of principal muscles around the shoulder of a cohort of patients with reverse total shoulder arthroplasty (RTSA). Surgeries for RTSA significantly increased in the last five years. Initially developed to treat patients with cuff tear arthropathy and pseudoparalysis, wider indications for RTSA were described (massive non repairable rotator cuff tears, complex 4-parts fractures). Since Grammont's theory in 1985, the precise biomechanics of the RTSA has not yet been demonstrated in vivo. Clinical results of patients with RSTA are still unpredictable and vary one from another. Methods. We conducted an observational prospective cohort study comparing 9 patients with RTSA (surgery more than 6 months and rehabilitation process achieved) and 8 controls with normal shoulder function adjusted for age, sex and dominance. Assessment consisted in a synchronized analysis of range of motion (ROM) and muscular activity on electromyography (EMG) with the use of 7 bipolar cutaneous electrodes, 38 reflective markers and 8 motion-recording cameras. Electromyographic results were standardized and presented in muscular activity (RMS) adjusted with maximal isometric contractions according to the direction tested. Five basic movements were evaluated (flexion, abduction, neutral external rotation, external rotation in 90° of abduction and internal rotation in 90° of abduction). Student t-test were used for comparative descriptive analysis (p<0,05). Results. ROM is limited in the RSTA group (flexion 128,5 vs 152,6, p=0,04; abduction 150 vs 166, p=0,02; neutral ext rot 28.3 vs 75.6, p<0,01; 90° ext rot 26,43 vs 70,63, p<0,01, int rot 27.5 vs 49.4, p=0,01). Anterior and middle deltoid shows less muscular activation in RTSA than in controls, sustaining the deltoid potentiation described by Grammont. Posterior deltoid shows decreased activity in external rotation movements in RTSA. Upper trapezius is the main activator in all directions with an early and constant activity in RTSA (p<0,01). Latissimus dorsi demonstrates increased muscular activity in internal rotation with RTSA (p<0,01). Discussion. The sequence of muscular activation in RTSA is different than in normal shoulder. Grammont's theory is confirmed with this study. The significant contribution of both the trapezius and latissimus dorsi has never been described until today. New rehabilitation protocols targeted on those muscle groups could demonstrate better and more homogenous clinical results


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 7 - 7
1 Apr 2018
Habashy A Casale M Waddell B Chimento G Sherman W
Full Access

Introduction. Body Mass Index (BMI) is an essential tool for orthopaedic surgeons in regards to preoperative risk stratification as well as assessment of overall health and nutritional status. Patient's self-awareness of their height, weight and BMI is crucial in maintaining a healthy lifestyle. The purpose of our study was to determine the accuracy of orthopaedic patient's reported height and weight. We hypothesized that a patient's age, sex and/or BMI may affect the accuracy of these reported values. Methods. After IRB approval, we performed a prospective, observational study in the setting of our orthopaedic clinic. Patients were asked to report their predicted height and weight and then were weighed and measured using a single standardized scale. All values, including age and sex, were recorded. Differences were then calculated. Patients were categorized based on their age (younger than 65 vs older than 65), sex, and actual BMI (less than 30 vs greater than 30). Student t-test was used to calculate significance (p <0.05 conferred significance). Results. A total of 211 patients participated in our study (127 females, 84 males). Females had an average height discrepancy of 2.21cm, whereas males had an average height discrepancy of 1.56 cm (p=0.22). Females had an average weight discrepancy of 2.46 kg compared to 2.13 kg in males (p=0.58). The average height discrepancy in patients less than 65 years old was 2.09 cm compared to 1.76 cm in patients older than 65 (p=0.81). The average weight discrepancy in patients less than 65 years old was 2.50 kg compared to 2.12 kg in patients older than 65 (p=0.54). The average height discrepancy in the high BMI group was 2.29 cm compared to 1.42 in the low BMI group (p=0.11). The average weight discrepancy in the high BMI group was 2.71 kg compared to 1.72 kg in the low BMI group. This difference approached statistical significance (p=0.094). In regards to BMI changes based on values reported, 64 patients had a lower actual BMI than reported (range −0.015 to −5.29 kg/cm. 2. ), 6 patients had no change in BMI, and 141 had an increase in BMI (range 0.0006 to 16.6 kg/cm. 2. ). Average BMI of those patients with less than 1 kg/cm. 2. change in BMI was 30.9 kg/cm. 2. , whereas those with greater than 1 kg/cm. 2. change in BMI had an average of 35.18 kg/cm. 2. (p=2.27×10. −5. ). There were 9 patients' whose reported weights gave them a BMI of less than 40 kg/cm. 2. , whereas their actual weight put their BMI over 40 kg/cm. 2. Conclusion. There was a trend towards higher BMI patients (BMI >30 kg/cm. 2. ) being less accurate in predicting their height and weight compared to a lower BMI population. Patients who had a more likely chance of inaccurate weight estimation leading to a greater change in BMI had a statistically higher BMI. In 9 instances, patients' reported weights kept them below the recommended threshold for receiving a total joint replacement, whereas their actual weight put them over the recommended threshold