Advertisement for orthosearch.org.uk
Results 1 - 20 of 50
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 19 - 19
17 Nov 2023
Lee K van Duren B Berber R Matar H Bloch B
Full Access

Abstract. Objectives. Stiffness is reported in 4%–16% of patients after having undergone total knee replacement (TKR). Limitation to range of motion (ROM) can limit a patient's ability to undertake activities of daily living with a knee flexion of 83. o. , 93. o. , and 106. o. required to walk up stairs, sit on a chair, and tie one's shoelaces respectively. The treatment of stiffness after TKR remains a challenge. Many treatment options are described for treating the stiff TKR. In addition to physiotherapy the most employed of these is manipulation under anaesthesia (MUA). MUA accounts for up to 36% of readmissions following TKR. Though frequently undertaken the outcomes of MUA remain variable and unpredictable. CPM as an adjuvant therapy to MUA remains the subject of debate. Combining the use of CPM after MUA in theory adds the potential benefits of CPM to those of MUA potentially offering greater improvements in ROM. This paper reports a retrospective study comparing patients who underwent MUA with and without post-operative CPM. Methods. Standard practice in our institution is for patients undergoing MUA for stiff TKR to receive CPM for between 12–24hours post-operatively. Owing to the COVID-19 pandemic hospital admissions were limited. During this period several MUA procedures were undertaken without subsequent inpatient CPM. We retrospectively identified two cohorts of patients treated for stiff TKR: group 1) MUA + post-operative CPM 2) Daycase MUA. All patients had undergone initial physiotherapy to try and improve their ROM prior to proceeding to MUA. In addition to patients’ demographics pre-manipulation ROM, post-MUA ROM, and ROM at final follow-up were recorded for each patient. Results. In total 168 patients who had undergone MUA between 2017–2022 were identified with a median Age of 66.5 years and 64% female. 57% had extension deficit (>5. o. ), 70% had flexion deficit (< 90. o. ), and 37% had both. 42 had daycase MUA without CPM and the remaining 126 were admitted for post-operative CPM. The mean Pre-operative ROM was 72.3. o. (SD:18.3. o. ) and 68.5. o. (19.0. o. ) for the daycase and CPM groups respectively. The mean ROM recorded at MUA was 95.5. o. (SD:20.7. o. ) and 108.3. o. (SD:14.1. o. ) [p<0.01] and at final follow-up was 87.4o (SD:21.9o) and 92.1o (SD:18.2o) for daycase and CPM groups respectively. At final follow-up for the daycase and CPM groups respectively 10% vs. 7% improved, 29% vs. 13% maintained, and 57% vs. 79% regressed from the ROM achieved at MUA. The mean percentage of ROM gained at MUA maintained at final follow-up was 92% (SD:17%) and 85% (SD:14%) [p=0.03] for daycase and CPM groups respectively. Conclusion. Overall, there was no significant difference in ROM achieved at final follow-up despite the significantly greater improvement in ROM achieved at MUA for the CPM group. Analysis of the percentage ROM gained at MUA maintained at follow up showed that most patients regressed from ROM achieved at MUA in both groups with those in the CPM only maintaining 85% as opposed to 92% in the daycase patients. It is our observation that post-operative CPM does not improve ROM achieved after MUA as compared to MUA alone. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 101 - 101
2 Jan 2024
Firth A Lee K van Duren B Berber R Matar H Bloch B
Full Access

Stiffness is reported in up to 16% of patients after total knee replacement (TKR). 1. Treatment of stiffness after TKR remains a challenge. Manipulation under anaesthesia (MUA) accounts for between 6%-36% of readmissions following TKR. 2,3. The outcomes of MUA remain variable/unpredictable. Post-operative CPM is used as an adjuvant to MUA, potentially offering improved ROM, however, remains the subject of debate. We report a retrospective study comparing MUA with and without post-operative CPM. In our institution patients undergoing MUA to receive CPM post-operatively. Owing to the COVID-19 pandemic hospital admissions were limited. During this period MUA procedures were undertaken without CPM. Two cohorts were included: 1) MUA + post-operative CPM 2) Daycase MUA. Patients’ demographics, pre-manipulation ROM, post-MUA ROM, and ROM at final follow-up were recorded. Between 2017-2022 126 patients underwent MUA and were admitted for CPM and 42 had daycase MUA. The median Age was 66.5 and 64% were female. 57% had extension deficit (>5. o. ), 70% had flexion deficit (< 90. o. ), and 37% had both. The mean Pre-operative ROM was 72.3. o. (SD:18.3. o. ) vs. 68.5. o. (19.0. o. ), ROM at MUA was 95.5. o. (SD:20.7. o. ) vs 108.3. o. (SD:14.1. o. ) [p< 0.01], and at final follow-up 87.4. o. (SD:21.9. o. ) vs. 92.1. o. (SD:18.2. o. ) for daycase and CPM groups respectively. At final follow-up for the daycase and CPM groups respectively 10% vs. 7% improved, 29% vs. 13% maintained, and 57% vs. 79% regressed from the ROM achieved at MUA. The mean percentage of ROM gained at MUA maintained at final follow-up was 92%(SD:17) and 85%(SD:14)[p=0.03] for daycase and CPM groups respectively. There was no significant difference in ROM achieved at final follow-up despite the significantly greater improvement in ROM achieved at MUA for the CPM group. The CPM group lost a greater ROM after MUA (15% vs. 8%). We conclude that post-operative CPM does not improve ROM achieved after MUA


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 2 | Pages 286 - 289
1 Mar 1996
Dwyer JSM Owen PJ Evans GA Kuiper JH Richardson JB

We describe a technique for measuring the Stiffness of regenerate bone after leg lengthening. This allows early identification of slow healing by reference to normal patterns. We determined the time of removal of the fixator from clinical and radiological information independent of the stiffness result. In a series of 30 leg lengthenings there were no refractures when the tibial stiffness had reached 15 Nm/° or the femoral stiffness 20 Nm/°. Three refractures occurred at lower stiffness values. The technique is simple to perform, will allow a reduction in plain radiography and is recommended for routine postoperative management


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 26 - 26
2 Jan 2024
Legerlotz K
Full Access

As high incidences of tendinopathies are observed particularly in those who intensively use their tendons, we assume that pathological changes are caused, at least partially, by mechanical overload. This has led to the so-called overload hypothesis, explaining the development of tendinopathies by structural failure resulting from excessive load. At the same time, tendon loading is an important part in tendon rehabilitation. Currently, exercise treatment approaches such as eccentric training or heavy load resistance training are widely applied in tendinopathy rehabilitation, with good clinical results such as an improvement in function and a reduction in pain. Particularly those rehabilitative approaches which impose high strains on the tendon may induce an adaptation of the tendon's mechanical properties such as increased tendon stiffness. An increased tendon stiffness is often interpreted as desirable, as it may protect the tendon from overloading and thus prevent future strain injuries. However, the tendinopathic tendon is not necessarily less stiff than the tendon in the contralateral leg and an improvement in tendon stiffness is not necessarily accompanied by an improvement in tendon pain or function. In addition, metabolic factors, resulting e.g. in low-level systemic inflammation, may contribute to pathological tendon tissue changes and are not necessarily affected by an exercise program, while nutritional interventions or dietary supplements may potentially affect tendon cell metabolism. Indeed, dietary supplements have been introduced as an additional therapeutic approach in the treatment of tendinopathies in recent years, and their positive curative effects have been reported for both the general population and athletes. In the management of tendinopathies, it may thus be advisable if therapeutic approaches aim to address both tendon mechanics and tendon metabolism for better treatment effectiveness and a sustainable improvement in pain and function.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 102 - 102
14 Nov 2024
Strack D Mesbah M Rayudu NM Baum T Kirschke J Subburaj K
Full Access

Introduction

Functional Spine Units (FSUs) play a vital role in understanding biomechanical characteristics of the spine, particularly bone fracture risk assessment. While established models focus on simulating axial compression of individual bones to assess fracture load, recent models underscore the importance of understanding fracture load within FSUs, offering a better representation of physiological conditions. Despite the limited number of FSU fracture studies, they predominantly rely on a linear material model with an annulus fibrosus Young's modulus set at 500 MPa, significantly higher than stiffness values (ca. 4 MPa) utilized in other FSU and spine section biomechanical models. Thus, this study aims to study the effect of varying annulus fibrosus stiffness on FSU fracture load, aiming to identify physiologically relevant biomechanical parameters.

Method

Subject-specific geometry and material properties of bones were derived from computed tomography (CT) image data of five human cadaveric FSU specimens. The annulus fibrosus and nucleus pulposus were manually recreated and assigned linear elastic material properties. By subjecting the model to axial compression, the fracture load of the FSU was deduced from the peak of the force-displacement graph. To explore the effect of stiffness of the annulus fibrosus on simulated fracture load, we conducted a parameter study, varying stiffness values from the high 500 MPa to a more physiologically relevant 25 MPa, aiming to approximate values applied in FSU kinematic models while achieving bone fracture.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 70 - 70
4 Apr 2023
Maestro-Paramio L García-Rey E Bensiamar F Rodríguez-Lorenzo L Vilaboa N Saldaña L
Full Access

Mesenchymal stem cells (MSC) have potent immunomodulatory and regenerative effects via soluble factors. One approach to improve stem cell-based therapies is encapsulation of MSC in hydrogels based on natural proteins such as collagen and fibrin, which play critical roles in bone healing. In this work, we comparatively studied the influence of collagen and fibrin hydrogels of varying stiffness on the paracrine interactions established by MSC with macrophages and osteoblasts.

Type I collagen and fibrin hydrogels in a similar stiffness range loaded with MSC from donants were prepared by modifying the protein concentration. Viability and morphology of MSC in hydrogels as well as cell migration rate from the matrices were determined. Paracrine actions of MSC in hydrogels were evaluated in co-cultures with human macrophages from healthy blood donors or with osteoblasts from bone explants of patients with osteonecrosis of the femoral head.

Lower matrix stiffness resulted in higher MSC viability and migration. Cell migration rate from collagen hydrogels was higher than from fibrin matrices. The secretion of the immunomodulatory factors interleukin-6 (IL-6) and prostaglandin E2 (PGE2) by MSC in both collagen and fibrin hydrogels increased with increasing matrix stiffness. Tumor necrosis factor-α (TNF-α) secretion by macrophages cultured on collagen hydrogels was lower than on fibrin matrices. Interestingly, higher collagen matrix stiffness resulted in lower secreted TNF-α while the trend was opposite on fibrin hydrogels. In all cases, TNF-α levels were lower when macrophages were cultured on hydrogels containing MSC than on empty gels, an effect partially mediated by PGE2. Finally, mineralization capacity of osteoblasts co-cultured with MSC in hydrogels increased with increasing matrix stiffness, although this effect was more notably for collagen hydrogels.

Paracrine interactions established by MSC in hydrogels with macrophages and osteoblasts are regulated by matrix composition and stiffness.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 98 - 98
14 Nov 2024
Höflsauer SG Bonnaire F Danalache M Feierabend M Hofmann U
Full Access

Introduction

Analogous to articular cartilage, changes in spatial chondrocyte organisation have been proposed to be a strong indicator for local tissue degeneration and destruction in the intervertebral disc (IVD). While a progressive structural and functional degradation of the extracellular (ECM) and pericellular (PCM) matrix occurs in osteoarthritic cartilage, these processes have not yet been biomechanically elucidated in the IVD. We aimed to evaluate the local stiffness of the ECM and PCM in the anulus fibrosus of the IVD on the basis of local cellular spatial organisation.

Method

Using atomic force microscopy, we measured the elastic modulus of the local ECM and PCM in human disc samples using the spatial chondrocyte patterns as an image-based biomarker.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 115 - 115
1 Nov 2021
Maestro L García-Rey E Bensiamar F Rodriguez-Lorenzo L Vilaboa N Saldaña L
Full Access

Introduction and Objective

Mesenchymal stem cells (MSC) are attractive candidates for bone regeneration approaches. Benefits of MSC therapy are mainly attributed to paracrine effects via soluble factors, exerting both immunoregulatory and regenerative actions. Encapsulation of MSC in hydrogels prepared with extracellular matrix (ECM) proteins has been proposed as a strategy to enhance their survival and potentiate their function after implantation. Functional activity of MSC can be regulated by the physical and mechanical properties of their microenvironment. In this work, we investigated whether matrix stiffness can modulate the crosstalk between MSC encapsulated in collagen hydrogels with macrophages and osteoblasts.

Materials and Method

Collagen hydrogels with a final collagen concentration of 1.5, 3 and 6 mg/mL loaded with human MSC were prepared. Viscoelastic properties of hydrogels were measured in a controlled stress rheometer. Cell distribution into the hydrogels was examined using confocal microscopy and the levels of the immunomodulatory factors interleukin-6 (IL-6) and prostaglandin E2 (PGE2) released by MSC were quantified by immunoassays. To determine the effect of matrix stiffness on the immunomodulatory potential of MSC, human macrophages obtained from healthy blood were cultured in media conditioned by MSC in hydrogels. The involvement of IL-6 and PGE2 in MSC-mediated immunomodulation was investigated employing neutralizing antibodies. Finally, the influence of soluble factors released by MSC in hydrogels on bone-forming cells was studied using osteoblasts obtained from trabecular bone explants from patients with osteonecrosis of the femoral head during total hip arthroplasty.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 17 - 17
1 Mar 2021
Hossain U Ghouse S Nai K Jeffers J
Full Access

Abstract

Objectives

Additive manufacturing (AM) enables fine control over the architecture of porous lattice structures, and the resulting mechanical performance. Orthopaedic implants may benefit from the tailored stiffness/elastic modulus of these AM biomaterials, as the stiffness can be made to closer match the properties of the replaced trabecular bone.

Methods

This study used laser powder bed fusion (PBF) to create stochastic porous lattice structures in stainless steel (SS316L) and titanium alloy (Ti6Al4V), with modifications that aimed to overcome PBF manufacturing limitations of build angles. The structures were tested in uni-axial compression (n = 5) in 10 load orientations relative to the structure, including the three orthogonal axes.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 31 - 31
1 Oct 2016
Boughton O Zhao S Arnold M Ma S Cobb J Giuliani F Hansen U Abel R
Full Access

The increase in revision joint replacement surgery and fractures of bone around orthopaedic implants may be partly addressed by keeping bone healthy around orthopaedic implants by inserting implants with mechanical properties closer to the patient's bone properties. We do not currently have an accurate way of calculating a patient's bone mechanical properties. We are therefore investigating whether microindentation can accurately calculate bone stiffness.

We received ethical approval to retrieve femoral heads and necks from patients undergoing hip replacement surgery for research. Cortical bone from the medial calcar region of the femoral neck was cut into 3×3×6mm cuboid specimens. Micro-indentation testing was performed in the direction of loading of the bone using a MicroMaterials indenter. The samples were kept hydrated and were not fixed or polished. From the unloading curve after indentation, the elastic modulus was calculated, using the Oliver- Pharr method. To assess which microindentation machine settings most precisely calculate the elastic modulus we varied the loading and unloading rates, load and indenter tip shape.

The most precise results were obtained by using a spherical indenter tip (rather than Berkovich tip), high load (10N), a loading rate of 100 mN/s and unloading rate of 300 mN/s with a pause of 60 seconds at maximum load and multiple load cycles with constant loads. Using these settings the mean elastic modulus over 12 cycles of testing was 13.0 GPa (+/- 2.47).

By using a spherical indenter tip and fast unloading it was possible to get precise apparent modulus values. By unloading as fast as possible the effects of bone viscoelastic properties are minimised. By using a spherical indenter tip, plastic deformation at the tip is minimised (compared to the Berkovich tip). We are performing further standard compression tests on the samples to verify the accuracy of the indentation tests.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 94 - 94
1 Jan 2017
Tas S Yilmaz S Onur M Korkusuz F
Full Access

Obesity decreases patellar tendon stiffness in females but not males Introduction Patellar tendon (PT) injuries are frequent due to excessive mechanical loading during strenuous physical activity. PT injury incidence is higher in females and obese individuals. The reason behind higher tendon injury incidence in females and obese individuals might be structural changes in tendons such as stiffness or elasticity. Tendon stiffness can recently be quantified using shear wave elastography (SWE). We aimed to examine the stiffness of PT in healthy sedentary participants using this new technology.

This prospective study was carried out with 58 (34 female, 24 male) healthy sedentary participants between the ages of 18–44 years (27.5±7.7 years). Body mass and body fat percentage were measured with the Bioelectrical Impedance method using Tanita BC-418 MA Segmental Body Composition Analyser (Tanita Corporation, Tokyo, Japan). Participants were subsequently categorized into ‘normal-weight’ (BMI < 23 kg/m2) and ‘obese’ (BMI>27.5 kg/m2). SWE of the PT was measured with the ACUSON S3000 (Siemens Medical Solution, Mountain Wiew, CA, USA) ultrasound device using the Siemens 9L4 (4–9 MHz) linear-array probe with the Virtual Touch Imaging Quantification® method. The measurement was performed by placing the US probe longitudinally on patellar tendon with knee flexed at 30°. The region between about 1 cm distal of patellar bone-tendon junction and 1 cm proximal of bone-tendon junction of tibia was used for PT stiffness measurement (Figure 1). Average of three successive measurements at 10 sec intervals was recorded as PT stiffness. PT stiffness was quantified with MATLAB Version 2015 (Mathworks, Massachusetts, USA) by converting colour data into numbers.

PT stiffness, in males, in females, in normal males, in obese males, in normal females, and in obese females was 8.6±1.0 m/sec, 7.4±1.1 m/sec, 8.6±1.1 m/sec, 8.5±1.0 m/sec, 7.9±0.9 m/sec, and 6.2±0.9 m/sec, respectively. Average body fat percentage in males, in females, in normal males, in obese males, in normal females, and in obese females was 20.1±7.4 kg/m2, 30.1±8.1 kg/m2, 15.4±5.2 kg/m2, 24.7±4.6 kg/m2, 25.6±5.5 kg/m2, and 38.1±5.0 kg/m2, respectively. Males PT stiffness was higher when compared to that of females (p=0.000). PT stiffness was similar in obese and normal males (p=0.962) but obese females had lower PT stiffness compared to normal females (p=0.001).

PT stiffness of females was lower than males and obesity decreased PT stiffness in females but not in males. The possible explanation of lower PT stiffness in females might be due to their higher estrogen levels that lead to a decrease in estradiol level and collagen synthesis. Lower tendon stiffness in obese females might be metabolic effects due to the increased adipose tissue that contains proteins such as adipokinome, chemerin, lipocalin 2, serum amyloid A3 and adiponectin. These proteins lead to disturbance of tendon homeostasis and decreased collagen content. Altered tendon homeostasis and decreased collagen content may lead to a decrease in tendon stiffness. Decreased PT stiffness in especially in obese women might be associated with increased risk of PT injury.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 121 - 121
1 Nov 2018
Musson D
Full Access

All cells exist within a 3D microenvironment where they are exposed to a multitude of mechanobiological cues, from nano-level cell/matrix interactions, to tissue-level mechanical strain. These cues are fundamental to maintaining tissue homeostasis, but when disrupted during disease, can promote pathological outcomes and impair healing. This is particularly true in tendons; 3D load bearing connective tissue structures composed of a complex arrangement of matrix proteins, organised in a highly aligned manner and maintained by tendon cells (tenocytes). When diseased or injured (termed tendinopathy), the tendon begins a journey of poor healing, characterised by mechanically inferior disorganised scar tissue which ultimately results in compromised or total loss of function. In both health and disease, the mechanobiological stimuli experienced by tenocytes will directly affect their behaviour, yet this is a poorly studied area of research. We have used decellularised tendon slices to mimic the structure of healthy tendon, and induced degradation to mimic tendinopathic tendon. We have re-seeded these slices with tenocytes or immune cells and are building a greater picture of the role that the structure and stiffness of the matrix has on cell behaviour in health and disease.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 19 - 19
1 Mar 2021
Lamb J Coltart O Adekanmbi I Stewart T Pandit H
Full Access

Abstract

Objective

To estimate the effect of calcar collar contact on periprosthetic fracture mechanics using a collared fully coated cementless femoral stem.

Methods

Three groups of six composite femurs were implanted with a fully coated collared cementless femoral stem. Neck resection was increased between groups (group 1 = normal, group 2 = 3mm additional, group 3 = 6mm additional), to simulate failure to obtain calcar collar contact. Periprosthetic fractures of the femur were simulated using a previously published technique. Fracture torque and rotational displacement were measured and torsional stiffness and rotational work prior to fracture were estimated. High speed video recording identified if collar to calcar contact (CCC) occurred. Results between trials where calcar contact did and did not occur where compared using Mann-Whitney U tests.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 68 - 68
1 Nov 2018
Tsai T Lian W Wang F Ko J
Full Access

Subacromial bursa fibrosis are linked to rotator cuff lesion with shoulder stiffness; however, the mechanism underlying this shoulder disorder remain elusive. MicroRNA-29s (miR-29s) are emerging fibrosis inhibitor targeting fibrogenic matrices during tissue fibrosis. This study is aimed to investigate clinical relevance and function of miR-29 signalling to subacromial bursa homeostasis in shoulder stiffness. Subacromial bursa in patients with rotator cuff lesion with or without shoulder stiffness who required open acromioplasty were harvested for assessing fibrosis histopathology using Manson's trichrome staining. Expressions of proinflammatory cytokines, fibrotic matrices, and miR-29s were quantified using RT-PCR and in situ hybridization. Range of motion and pain scores of the stiffness group were higher than those of non-stiffness group. Upregulated proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and fibrotic matrices (collagen 1α1, 3α1, and 4α1) but decreased miR-29a and b expression existed in the stiffness group. Affected tissues exhibited severe fibrotic matrix accumulation, synovial hyperangiogenesis, hyperplasia, and strong miR-29a transcripts. In vitro, IL-1β rather than IL-6 and TNF-α decreased miR-29a expression of subacromial bursa fibroblasts. miR-29a knockdown escalated fibrotic matrix expression, whereas forced miR-29a expression alleviated the IL-1β-induced fibrotic matrix expression. Of interest, miR-29a transgenic mice displayed moderate responses to supraspinatus and infraspinatus tenotomy-induce fibrosis and gait irregularity of affected shoulders. Weak miR-29 signalling causes excessive fibrosis and remodelling in subacromial bursa and ultimately increases the prevalence of shoulder stiffness. This study reveals a new mechanistic underlying shoulder stiffness and highlights that sustained miR-29a potentially ameliorates the severity and function of stiff shoulder.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 85 - 85
1 Apr 2018
Taş S Korkusuz F Erden Z
Full Access

Purpose

Even though various factors have been associated with neck pain, skeletal muscle mechanical properties have been cited among the leading causes of neck pain. Changes in skeletal muscle stiffness may be related to chronic neck pain and these changes may be associated with the severity of pain and disability in patients with chronic neck pain. The purpose of the present study was to investigate differences in neck muscle stiffness between patients with chronic neck pain and asymptomatic control group. Another purpose of the study was to investigate the relationship of muscle stiffness with the severity of physical disability and pain in patients with chronic neck pain.

Methods

A cross-sectional case-control study with 86 participants (43 patients with chronic neck pain and 43 age-matched asymptomatic controls) was designed. The present study included patients with a pain intensity level of 20 or more based on the Numerical Rating Scale (NRS) and a total disability level of 10 or more based on the Neck Disability Index (NDI). Ultrasonic evaluation of upper trapezius, splenius capitis, and sternocleidomastoid muscle performed with the ACUSON S3000 Ultrasonography Device using Siemens 9L4 (4–9 MHz) linear-array ultrasound probe. Shear Wave Velocity (SWV) of selected muscles was obtained using customized software, Virtual Touch Imaging and Quantification® (Siemens Medical Solution, Mountain View, CA, USA).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 36 - 36
1 Jan 2017
Ajaxon I Acciaioli A Lionello G Ginebra M Öhman C Persson C Baleani M
Full Access

Calcium phosphate cements (CPC) are used as biocompatible and bioactive bone void fillers. Ideally, the mechanical properties of these cements should match those of the surrounding bone. The knowledge of the real mechanical properties of the material is important in the decision-making process regarding possible use of the CPCs in different anatomical sites. Although it is generally recognized that these cements are stiffer and more brittle than desired, there is a limited amount of data about the possible deformation of this class of material before failure. The focus of this study was to determine these properties of injectable CPCs.

Two different types of self-setting CPCs were investigated in this study: i) hydroxyapatite (HA), that historically has been the most widely studied CPC; ii) brushite, that recently has attracted attention due to its faster resorption than that of HA in vivo. Specimens of both cement types were prepared by mixing a powder phase with a liquid phase that were left to harden in phosphate buffered saline at 37°C. Once set, the specimens underwent a quasi-static compressive test to determine the compressive strength, the elastic modulus and the maximum deformation of the two materials. The material testing machine was equipped with a digital image correlation system, which allows accurate measurement of material deformation directly on the specimen surface.

Brushite was found to be significantly more stiff (+80%) and resistant (+84%) than HA. Similar findings were found for the energy needed to create a first crack on the specimen surface. However, the first crack appeared on the specimen surface at the same low deformation level (∼0.15%) independently of the type of material tested. Complete failure of both materials occurred, on average, before reaching 0.25%.

It has been demonstrated that the compressive behaviour of CPCs depends on their composition and porosity [1]. One of the main reasons for the high strength and stiffness of the brushite studied here was its low porosity (∼12%). However, the maximum deformation is not positively affected by this decrease in porosity. In fact, both materials show the same brittle behaviour, i.e. they undergo comparably little deformation before they break. Under these conditions, increasing the compressive strength may not always be beneficial clinically, e.g. in the treatment of vertebral compression fractures, where the high stiffness of the bone cements used has been identified as a risk factor for adjacent-level fractures [2]. However, it is not clear whether a 20-fold higher stiffness than the trabecular bone would give a different clinical outcome than a 10-fold higher stiffness. These high-strength, high-stiffness cements may also be used as a basis for further biomaterial development, e.g. in the creation of macro-porous scaffolds, which is usually challenging due to the commonly low mechanical properties of the base CPC material.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 23 - 23
1 Mar 2013
Wright K Morrison R Dalgarno K Birch M McCaskie A
Full Access

hMSC cultures were prepared from osteoarthritic patients. Silicone elastomer (PDMS) culture surfaces of varying degrees of stiffness (1:10, 1:30 and 1:50 PDMS, tissue culture plastic and glass) were investigated in isolation and in combination with differentiation media. CD marker expressions of ‘stemness’ were investigated. RNA expression changes in OA-hMSCs and non-OA-hMSCs were also investigated for a panel of genes (inclusive of ‘stemness-’ and osteogenic-linked genes, FKBP5 and osteomodulin).


Bone & Joint Research
Vol. 6, Issue 9 | Pages 542 - 549
1 Sep 2017
Arnold M Zhao S Ma S Giuliani F Hansen U Cobb JP Abel RL Boughton O

Objectives

Microindentation has the potential to measure the stiffness of an individual patient’s bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness.

Methods

A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 39 - 39
1 Mar 2013
Morrison R Stott M Wright K McCaskie A Birch M
Full Access

Human mesenchymal stem cells (hMSCs) have the capacity to differentiate into adipocytes, chondrocytes, or osteoblasts, and are an exciting tool to be used in regenerative medicine and surgery. By manipulating the surface structure and physical properties of a biomaterial on which hMSCs can be incorporated, the biological response of these cells at the implant site can be controlled. Whilst both topography and surface stiffness are known to influence differentiation of hMSC's, little is understood of the molecular mechanisms that underpin these responses. In this study we use immunofluorescence and confocal microscopy techniques to assess the change in both the abundance and the distribution of H3K9me2 or H3K9ac patterns in hMSCs cultured on materials with controlled topography and stiffness, under basal and osteogenic conditions. These data demonstrate that levels and localisation of both H3K9me2 and H3K9ac alter in hMSCs cultured on the different substrates and that these surfaces dictate the response to osteogenic stimuli, suggesting that the control of cytoskeletal structure can be linked to chromatin activity. This regulation of histone modification by MSC interaction with the surrounding scaffold provides not only a mechanistic link to the control of cell fate but also the opportunity to design biomaterials that better influence cell activity.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 43 - 43
17 Apr 2023
Hayward S Miles A Keogh P Gheduzzi S
Full Access

Injury of the intervertebral disc (IVD) can occur for many reasons including structural weakness due to disc degeneration. A common disc injury is herniation. A herniated nucleus can compress spinal nerves, causing pain, and nucleus depressurisation changes mechanical behaviour. Many studies have investigated in vitro IVD injuries including endplate fracture, incisions, and nucleotomy. There is, however, a lack of consensus on how the biomechanical behaviour of spinal motion segments is affected. The aim of this study was to induce defined changes to IVDs of spine specimens in vitro and apply 6 degree of freedom testing to evaluate the effect of these changes. Six porcine lumbar spinal motion segments were harvested from organically farmed pigs. Posterior structures were removed to produce isolated spinal disc specimens. Specimens were potted in Wood's metal, ensuring the midplane of the IVD remained horizontal. After potting, specimens were sprayed with 0.9% saline, wrapped in saline-soaked tissue and plastic wrap to prevent dehydration. A 400N axial preload was equilibrated for 30 minutes before testing. Specimens were tested intact and after a partial nucleotomy removing ~0.34g of nuclear material with a curette through an annular incision. Stiffness tests were performed using the University of Bath's custom 6-axis spine simulator with coordinate axes and displacement amplitudes. Tests comprised five cycles with data acquired at 100Hz. Stiffness matrices were evaluated from the last three motion cycles using the linear least squares method. Stiffness matrices for intact and nucleotomy tests were compared. No significant differences in shear, axial or torsional stiffnesses were noted. Nucleotomy caused significantly higher stiffness in lateral bending and flexion-extension with increased linearity and the load-displacement behaviour in these axes displayed no neutral zone (NZ). Induced changes were designed to replicate posterolaterally herniated discs. Unaffected shear, axial and torsional stiffnesses suggest the annulus is crucial in these axes. However, reduced ROM and NZ after nucleotomy suggests bending is most affected by herniation. Increased linearity and lack of defined NZ in these axes demonstrates herniation causes major changes to the viscoelastic behaviour of spine specimens in response to loading