Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 75 - 75
1 Apr 2018
Matsuura M Schmidutz F Sprecher C Müller P Chevalier Y
Full Access

Introduction. Stemless shoulder implants have recently gained increasing popularity. Advantages include an anatomic reconstruction of the humerus with preservation of bone stock for upcoming revisions. Several implant designs have been introduced over the last years. However, only few studies evaluated the impact of the varying designs on the load transfer and bone remodeling. The aim of this study was to compare the differences between two stemless shoulder implant designs using the micro finite element (µFE) method. Materials and Methods. Two cadaveric human humeri (low and high bone mineral density) were scanned with a resolution of 82µm by high resolution peripheral quantitative computer tomography (HR-pQCT). Images were processed to allow virtual implantation of two types of reverse-engineered stemless humeral implants (Implant 1: Eclipse, Arthrex, with fenestrated cage screw and Implant 2: Simpliciti, Tornier, with three fins). The resulting images were converted to µFE models consisting of up to 78 million hexahedral elements with isotropic elastic properties based on the literature. These models were subjected to two loading conditions (medial and along the central implant axis) and solved for internal stresses with a parallel solver (parFE, ETH Zurich) on a Linux Cluster. The bone tissue stresses were analysed according to four subregions (dividing plane: sagittal and frontal) at two depths starting from the bone-implant surface and the distal region ending distally from the tip of Implant 1 (proximal, distal). Results. Medial loads produced higher bone tissue stresses when loading was applied along the implant axis. This was more prominent in the lower density bone, causing more than 3 times higher stresses in the highest region for both implants. Bone tissue stresses were also shown to be higher in the low density specimen, especially in the distal zone. The maximum bone tissue stress ratio for low/high density bone reached 4.4 below Implant 1 and 2.2 below Implant 2, occurring both with a medially-directed load. For both implants, the highest bone tissue stresses were predicted in the distal region than in the proximal region, with larger distal-to-proximal stress ratios below Implant 1 than Implant 2 (3.8 and 1.7, respectively). Discussion. Our µFE analyses show that the implant anchorage design clearly influences load transfer to the periprosthetic bone. The long fenestrated cage screw of Implant 1 showed more direct distal stress transfer, which may lead to stress shielding in the proximal region, in a larger extent than Implant 2 which tends to distribute loads more evenly. Furthermore, periprosthetic bone quality appears to be an important factor for load transfer, causing dramatic changes due to different loading condition and implant geometry. These findings will help further improve anchorage design for stemless humeral heads in order to minimize bone remodeling and the long-term fixation of these implants


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 27 - 27
1 Jun 2012
Young PS Middleton RG Learmonth ID Minhas THA
Full Access

Total hip arthroplasty is well established as a successful treatment modality for end stage arthritis, with a variety of components currently available. However, utilising traditional stemmed implants in patients with distorted proximal femoral geometry can be technically challenging with increased risk of complications. We present seven patients with distorted proximal femoral anatomy or failed hip arthroplasty in whom a technically challenging primary or revision operation was simplified by use of a Proxima stem. This is a short, stemless, metaphyseal loading implant with a pronounced lateral flare. At twelve months follow up there have been no complications with average improvement in Oxford and Harris scores of forty and forty-nine respectively. Radiological analysis shows all stems to be stable and well fixed. Designed primarily as a bone conserving implant for primary hip arthroplasty we propose that the Proxima prosthesis also be considered in cases where a conventional stemmed implant may not be suitable due to challenging proximal femoral anatomy. The use of the stemless Proxima implant provided a simple solution in seven difficult and potentially lengthy complex primary and revision hip arthroplasties with gratifying clinical and radiological outcomes


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 355 - 355
1 Jul 2014
Dun S Warlop D Swope S
Full Access

Summary Statement. The current biomecahnical study demonstrated that the stemless peripheral leg humeral component prototype and central screw humeral component prototype achieved similar initial fixation as stemmed Global Advantage humeral component in terms of resultant micromotion in total shoulder arthroplasty. Introduction. A stemless humeral component may offer a variety of advantages over its stemmed counterpart, e.g. easier implantation, preservation of humeral bone stock, fewer humeral complications, etc. However, the initial fixation of a stemless humeral component typically depends on cementless metaphyseal press-fit, which could pose some challenges to the initial stability. Long-term success of cementless implants is highly related to osseous integration, which is affected by initial implant-bone interface motion. 1. The purpose of the study was to biomechanically compare micromotion at the implant-bone interface of three humeral components in total shoulder arthroplasty. Patients & Methods. Three humeral components were evaluated: Global Advantage, a central screw prototype, and a peripheral leg prototype. All components were the smallest sizes available. Global Advantage is a stemmed design. Both central screw prototype and peripheral leg prototype are stemless designs. Five specimens were tested for each design. Composite analogue humeral models were utilized to simulate the humeral bone. The cortical wall had a thickness of 3 mm and a density of 481 kg/m. 3. , while the cancellous density was 80 kg/m. 3. The model was custom fabricated to accommodate 40 mm humeral component and had a 45° resected surface and a square base to facilitate test setup. Each humeral component was implanted per its surgical technique. The construct was clamped in a vise with the humeral shaft angled at 27°. A MTS test system was employed to conduct the test. A sinusoidal compressive load from 157 N to 1566 N (2BW) was applied to the humeral component at 1 Hz for 100 cycles. The implant-bone interface micromotion was measured with a digital image correlation system which had a resolution of less than 1 micron. The micromotion measurement was transformed to 2 components: 1 was parallel and the other perpendicular to the humeral resection surface. Peak-valley micromotion from the last 10 cycles were averaged and utilised for data analyses. A one-way ANOVA and post-hoc Tukey tests were performed to compare the micromotion of different designs (α=0.05). Results. Micromotion of Global Advantage parallel to the resection (X-Axis) was significantly less than that of central screw prototype and peripheral leg prototype. Micromotion of peripheral leg prototype perpendicular to the resection (Y-Axis) was significantly less than Global Advantage and central screw prototype. There was no significant difference between different designs in resultant micromotion. Discussion/Conclusion. Clinical studies have shown that current stemless shoulder prosthesis yielded encouraging results in mid-term follow-ups. Particularly, the stemless Arthrex Eclipse humeral component, a central screw design, has been reported to have a secure bony fixation and ingrowth at an average of 23 months postoperatively. 4. The current study demonstrated that the stemless peripheral leg prototype and central screw prototype achieved similar initial fixation as stemmed Global Advantage in terms of resultant micromotion, and provided biomechanical evidence that stemless humeral components could have comparable initial stability to stemmed counterparts


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 118 - 118
1 Aug 2012
Kumar KS Budithi S Jaiswal A Robinson E Richardson J
Full Access

Background. Thrust plate prosthesis (TPP) is a bone conserving prosthesis in use for over thirty years. TPP is a stemless and uncemented femoral prosthesis fixed at the lateral femoral cortex with a bolt, plate and screw. This has a metal-on-metal articulation with a 28mm Metasul head and Allofit press fit acetabular cup. Our study aimed to assess the functional outcome of this prosthesis. Methods. In our institution 234 TTPs were implanted between 1995 and 2005. All patients completed a self-assessed questionnaire of Harris Hip Score at 2 months, 1 year, and then yearly. Only those who had a follow up was within the last two years were included in the analysis. 76 patients who had failed to satisfy the criteria were excluded. Of the 158 hips in the study 75 hips were in male patients and 83 were in female patients. The median age of patients was 52 years (range 15 to 82). 75 hips were on the right side and 83 on the left. All patients were operated by the senior author or a senior trainee under his supervision (seven hips). Revision of the implant or decision to revise was taken as the end point of our study. Results. The median time to follow up was 7 years (range 1 to 15). The median pre-operative hip score was 43 (range 3 to 77) which rose to 83 points (range 11 to 100) at the latest follow up. Median hip score in females improved from 39 to 82 points and in males from 52 to 85 points. Twelve patients underwent revision surgery either for infection or aseptic loosening. Conclusion. The Thrust Plate Prosthesis had a good outcome with an increase in hip score of 40 points and a median survival of 7 years


Bone & Joint 360
Vol. 9, Issue 2 | Pages 46 - 48
1 Apr 2020
Evans JT Whitehouse MR


Bone & Joint Research
Vol. 9, Issue 4 | Pages 162 - 172
1 Apr 2020
Xie S Conlisk N Hamilton D Scott C Burnett R Pankaj P

Aims

Metaphyseal tritanium cones can be used to manage the tibial bone loss commonly encountered at revision total knee arthroplasty (rTKA). Tibial stems provide additional fixation and are generally used in combination with cones. The aim of this study was to examine the role of the stems in the overall stability of tibial implants when metaphyseal cones are used for rTKA.

Methods

This computational study investigates whether stems are required to augment metaphyseal cones at rTKA. Three cemented stem scenarios (no stem, 50 mm stem, and 100 mm stem) were investigated with 10 mm-deep uncontained posterior and medial tibial defects using four loading scenarios designed to mimic activities of daily living.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1110 - 1115
1 Aug 2006
Ong KL Kurtz SM Manley MT Rushton N Mohammed NA Field RE

The effects of the method of fixation and interface conditions on the biomechanics of the femoral component of the Birmingham hip resurfacing arthroplasty were examined using a highly detailed three-dimensional computer model of the hip. Stresses and strains in the proximal femur were compared for the natural femur and for the femur resurfaced with the Birmingham hip resurfacing. A comparison of cemented versus uncemented fixation showed no advantage of either with regard to bone loading. When the Birmingham hip resurfacing femoral component was fixed to bone, proximal femoral stresses and strains were non-physiological. Bone resorption was predicted in the inferomedial and superolateral bone within the Birmingham hip resurfacing shell. Resorption was limited to the superolateral region when the stem was not fixed. The increased bone strain observed adjacent to the distal stem should stimulate an increase in bone density at that location. The remodelling of bone seen during revision of failed Birmingham hip resurfacing implants appears to be consistent with the predictions of our finite element analysis.