Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 74 - 74
1 Nov 2018
Eichholz KF Hoey DA
Full Access

The architecture within which cells reside is key to mediating their specific functions within the body. In this study, we use melt electrospinning writing (MEW), a recently developed 3D printing technology unique in its ability to generate ECM like fibres and control their deposition, to fabricate cell micro-environments with various fibrous architectures to study their effect on human stem cell behaviour. We designed, built and optimised a MEW apparatus and used it to fabricate four different platform designs of 10.4±2μm fibre diameter, with angles between fibres on adjacent layers of 90°, 45°, 10° and R (random). Characterisation was conducted via scanning electron microscopy (SEM) imaging and tensile testing, and human skeletal stem cells (hSSCs) were seeded to scaffolds to study the effect of architecture on cell morphology and mechanosensing. Cell morphology was significantly altered between groups, with cells on 90° scaffolds having a lower aspect ratio, greater spreading, greater cytoskeletal tension and nuclear YAP expression. Long term cell culture studies were then conducted to determine the differentiation potential of scaffolds in terms of alkaline phosphatase activity, collagen and mineral production. Across these studies, an increased cell spreading in 3-dimensions is seen, with decreasing alignment of architecture correlated with enhanced osteogenesis, as seen by significant fold increases in ALP (2.8), collagen (2.5) and calcium (3.6) in the 90° scaffold architecture compared to 10°. This study therefore highlights the critical role of fibrous architecture in regulating stem cell behaviour with implications for tissue engineering and disease progression


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 297 - 303
1 Mar 2000
Ramaniraka NA Rakotomanana LR Leyvraz P

After cemented total hip arthroplasty (THA) there may be failure at either the cement-stem or the cement-bone interface. This results from the occurrence of abnormally high shear and compressive stresses within the cement and excessive relative micromovement. We therefore evaluated micromovement and stress at the cement-bone and cement-stem interfaces for a titanium and a chromium-cobalt stem. The behaviour of both implants was similar and no substantial differences were found in the size and distribution of micromovement on either interface with respect to the stiffness of the stem. Micromovement was minimal with a cement mantle 3 to 4 mm thick but then increased with greater thickness of the cement. Abnormally high micromovement occurred when the cement was thinner than 2 mm and the stem was made of titanium. The relative decrease in surface roughness augmented slipping but decreased debonding at the cement-bone interface. Shear stress at this site did not vary significantly for the different coefficients of cement-bone friction while compressive and hoop stresses within the cement increased slightly