Mesenchymal stem cells (MSCs) reside around blood vessels in all organs. This reservoir of progenitors can be ‘recruited’ in response to injury. The ability to manipulate stem cells therapeutically within injured tissue provides an attractive alternative to transplantation. Stem cells are regulated by neighbouring cells. We hypothesized that endothelial cells (ECs) influence MSC differentiation into bone and fat. MSCs were sorted from fat using fluorescent activated sorting. Their capacity to differentiate into bone, fat and cartilage was used to confirm MSC phenotype. MSCs and ECs were cultured in two-dimensions (standard culture dishes) and three-dimensions (vascular networks suspended in gel). Cocultures were exposed to osteogenic and adipogenic media. The role of EC-released factors on MSC differentiation was determined using a system in which cells share media but do not contact. Wnt pathway modulators were used to investigate the role of Wnt signalling. MSCs differentiated into bone, fat and cartilage. MSCs and ECs integrated in two- and three-dimensions. MSCs and ECs formed vessel-like structures in three-dimensions. When cultured with ECs, MSC differentiation to bone was accelerated while differentiation to fat was inhibited. This effect on osteogenesis was maintained when cells shared media but did not contact. Coculture with Wnt modulators confirmed that this effect is in part, mediated through Wnt signalling. Our data suggest that ECs influence MSC differentiation. Therapeutic targeting of EC-MSCs signalling may enable manipulation of MSCs in vivo avoiding the need for cell transplantation. This could enable trauma and orthopaedic patients who have healthy resident stem cells to self-repair.
This study reports the results of percutaneous autologous bone marrow grafting in 62 patients with corticosteroids treatment who had one hip osteonecrosis treated with bone marrow (BM) injection and the other contralateral hip osteonecrosis with core decompression (CD) alone. Only patients with bilateral symptomatic osteonecrosis and with those hips at stage I or II (as defined by Steinberg) were included in this study. Between 1988 and 1995, 62 consecutive patients (28 males and 34 females) were included in this study. These patients had a mean age of 31 years (range 18 to 34 years) at the time of the onset of symptoms. The average follow-up was 17 years (range, 15 to 20 years). An average of 152 + 16 milliliters of marrow was aspirated from the iliac crest. The number of stroma progenitor that was transplanted was estimated by counting the Fibroblast Colony Forming Units which express type I and type III collagen. The bone marrow graft obtained after concentration contained average 4889 + 716 progenitors per cubic centimeter (range 3515 to 6293 per cubic centimeter). Each hip received a mean number of thirty cubic centimeters of bone marrow graft (range 27 to 35 cubic centimeters). The average total number of CFU-F injected in each hip was therefore 147 × 103 cells (range 119 × 103 to 195 × 103 cells).Introduction
Material and Methods
Adipose tissue is an attractive source of mesenchymal stem cells (MSCs) as it is largely dispensable and readily accessible through minimally invasive procedures such as lipoaspiration. Until recently MSCs could only be isolated in a process involving ex-vivo culture. Pericytes (CD45−, CD146+, and CD34−) and adventitial cells (CD45−, CD146−, CD34+) represent two populations of MSCs (collectively termed perivascular stem cells or PSCs) that can be prospectively purified using fluorescence activated cell sorting (FACS). We performed FACS on lipoaspirate samples from n=129 donors to determine the frequency and yield of PSCs and to establish patient and processing factors that influence yield. The mean number of stromal vascular fraction (SVF) cells from 100ml of lipoaspirate was 37.8×106. Within the SVF, mean cell viability was 82%, with 31.6% of cells being heamatopoietic (CD45+). Adventitial cells and pericytes represented 31.6% and 7.9% of SVF cells respectively. As such, 200ml of lipoaspirate would theoretically yield 24.5 million MSCs –a sufficient number to enable point-of-care delivery for use in several orthopaedic applications. The yield and prevalence of PSCs were minimally affected by donor age, sex and BMI. Storing lipoaspirate samples for up to 72 hours prior to processing had no significant deleterious effects on MSC yield or viability. Our study confirms that pure populations of MSC-precursors (PSCs) can be prospectively isolated from adipose tissue, in sufficient quantities to negate the necessity for culture expansion while widening possible applications to include trauma, where a time delay between extraction and implantation excludes their use.
MSCs have long promised benefits of synthesising bone/cartilage, treating non-unions and potentially accelerating fracture repair. This potential has been tempered by MSC scarcity in the ‘gold-standard’ iliac crest bone marrow aspirate (ICBMA) and the resulting need to expand numbers via cell-culture. Culture of MSCs is time-consuming, expensive and results in cells with a reduced differentiation capacity. The reamer-irrigator-aspirator (RIA) is an innovation designed to reduce intra-medullary (IM) pressures during reaming of long-bones via continuous irrigation and suction. Aspirated contents are passed via a coarse filter, which traps bony-fragments before moving into a ‘waste’ bag - from which MSCs have been previously isolated. We examined liquid and solid phases found in this ‘waste’, performed a novel digestion of the solid phase and made a comparative assessment in terms of number, phenotype and differentiation capacity with matched ICBMA. The filtrate ‘waste’ bag from RIA reaming (6 patients) was filtered (70μm) and the solid fraction digested for 60min (37°C) with collagenase. MSCs were isolated from liquid & solid fractions and from 10ml matched ICBMA. Enumeration of MSCs was achieved via colony-forming-unit-fibroblast (CFUF) assay and flow-cytometry on fresh sample using CD45low, CD271+. MSCs were cultured by virtue of their plastic adherence and passaged in standard, non-haematopoietic media. Passage (P2) cells were differentiated towards osteogenic, adipogenic and chondrogenic lineages with their phenotype assessed with flow cytometry CD33 CD34 CD45 CD73 CD90 CD105.Introduction
Methods
Perivascular stem cells (PSCs) from lipoaspirate demonstrate increased purity and immaturity with greater engraftment potential than standard mesenchymal stem cells (MSCs). MSCs from the infra-patellar fat pad (IFP) have previously demonstrated increased chondrogenic potential. This study investigated the availability and potential of PSCs harvested from the infra-patellar fat pad of the human knee for musculoskeletal regeneration. Tissue sections of IFP were stained with markers for PSCs, MSCs and endothelial cells to confirm their presence and location. Samples were obtained from patients undergoing TKR (n=13) or ACL reconstructions (n=10). Pericytes and adventitial cells made up 3.8% and 21.2% respectively of the stromal vascular fraction. The total number of pericytes and adventitial cells were 4.6±2.2×104 and 16.2±3.2×104 respectively. Cells were cultured both separately and combined. Cell identity was ascertained using fluorescence-activated cell sorting, immunocytochemistry and PCR. Cultured PSCs were differentiated using chondrogneic, osteogenic, adipogenic and myogenic medias. Differentiation was determined using Alcian Blue, Alizarin red, Oil Red O and myosin staining. This study demonstrates that the IPFP is a viable source of PSCs that can be harvested either arthroscopically or through an arthrotomy by orthopaedic surgeons for cell-based musculoskeletal regeneration. Their potential now needs to be compared to conventional MSCs.
Perivascular stem cells (PSCs) from lipoaspirate demonstrate increased purity and immaturity with greater engraftment potential than standard mesenchymal stem cells (MSCs). MSCs from the infra-patellar fat pad (IFP) have previously demonstrated increased chondrogenic potential. This study investigated the availability and potential of PSCs harvested from the infra-patellar fat pad of the human knee for musculoskeletal regeneration. Sections of IFP were stained with markers for PSCs, MSCs and endothelial cells to confirm their presence and location. Samples were obtained from patients undergoing TKR (n=13) or ACL reconstructions (n=10). Pericytes and adventitial cells made up 3.8% and 21.2% respectively of the stromal vascular fraction. The total number of pericytes and adventitial cells were 4.6±2.2×104 and 16.2±3.2×104 respectively. Cells were cultured both separately and combined. Cell identity was ascertained using fluorescence-activated cell sorting and immunocytochemistry. Cultured PSCs were differentiated using chondrogneic, osteogenic, adipogenic and myogenic medias. Differentiation was determined using Alcian Blue, Alizarin red, Oil Red O and mysosin staining. This study demonstrates that the IFP is a viable source of PSCs that can be harvested either arthroscopically or through an arthrotomy by orthopaedic surgeons for cell-based musculoskeletal regeneration. Their potential now needs to be compared to conventional MSCs.
iPSCs represent a promising cell source for bone regeneration. To generate osteoprogenitor cells, most protocols use the generation of embryoid bodies (EBs). However, these protocols give rise to heterogeneous population of different cell lineage. We hypothesized that a direct plating method without EB formation step could be an efficient protocol for generating a homogeneous population of osteoprogenitor cells from iPSCs.Introduction
Hypothesis
Our unpublished data has indicated that the perivascular stem cells (PSCs) have increased chondrogenic potential compared to mesenchymal stem cells (MSCs) derived in culture. There has been a recent change in the theory that stem cells work by a paracrine effect rather than differentiation. There are minimal data demonstrating the persistence of implanted stem cells when used for engraftment. This study aimed to develop an autologous large animal model for perivascular stem cells as well as to determine if cells were retained in the articular cartilage defects. The reactivity of anti-human and anti-ovine antibodies was ascertained using immunohistochemistry and fluorescence-activated cell sorting (FACS). A panel of antibodies were combined and used to identify and purify pericytes (CD34-CD45-CD146+) and adventitial cells (CD34+CD45-CD146-) using FACS. The purified cells were cultured and their identity checked using FACS. These cultured cells demonstrated osteogenic, adipogenic and chondrogenic potential. Autologous ovine PSCs (oPSCs) were isolated, cultured and transfected using a GFP virus. The transfection rate was 88%. The cells were implanted into an articular cartilage defect on the medial femoral condyle using a hydrogel, four weeks following implantation the condyle was explanted and confocal laser scanning microscopy demonstrated the presence of oPSCs in the defect. Histology did not demonstrate any repair tissue at this early time point. These data have confirmed the viability our large animal model and that the implanted stem cells were retained in the defect four weeks following implantation.
Nonunions pose complications in fracture management that can be treated using electrical stimulation (ES). Bone marrow mesenchymal stem cells (BMMSCs) are essential in fracture healing, although the effects of different clinical ES waveforms available in clinical practice on BMMSCs cellular activities is unknown. We compared Direct Current (DC), Capacitive Coupling (CC), Pulsed Electromagnetic wave (PEMF) and Degenerate Wave (DW) by stimulating human-BMMSCs for 5 days for 3 hours a day. Cytotoxicity, cell proliferation, cell-kinetics and cell apoptosis were evaluated after ES. Migration and invasion were assessed using fluorescence microscopy and affected gene and protein expression were quantified.Introduction
Materials and Methods
Iliac crest bone marrow aspirate (ICBMA) is frequently cited as the ‘gold-standard’ source of MSCs. Mesenchymal stem cells have been shown to reside within the intramedullary (IM) cavities of long-bones and a comparative assessment with ICBMA has not yet been performed. Aspiration of the IM cavities of 6 patients' femurs with matched ICBMA was performed. The long-bone-fatty-bone-marrow (LBFBM) aspirated was filtered (70μm) and the solid fraction digested for 60min (37°C) with collagenase. Enumeration was performed via the colony-forming-unit-fibroblast (CFU-F) assay and using the CD45low CD271+ phenotype via flow-cytometry. Passaged (P2) cells were differentiated towards osteogenic, adipogenic and chondrogenic lineages with their phenotype assessed using flow-cytometry CD33 CD34 CD45 CD73 CD90 CD105.Introduction
Methods
Proliferation of synovial Mesenchymal Stromal/