Inter-subject variability is inherently present in patient anatomy and is apparent in differences in shape, size and relative alignment of the bony structures. Understanding the variability in patient anatomy is useful for distinguishing between pathologies and to assist in surgical planning. With the aim of supporting the development of stratified orthopaedic interventions, this work introduces an Articulated
Adult Spine Deformity (ASD) is a degenerative condition of the adult spine leading to altered spine curvatures and mechanical balance. Computational approaches, like Finite Element (FE) Models have been proposed to explore the etiology or the treatment of ASD, through biomechanical simulations. However, while the personalization of the models is a cornerstone, personalized FE models are cumbersome to generate. To cover this need, we share a virtual cohort of 16807 thoracolumbar spine FE models with different spine morphologies, presented in an online user-interface platform (SpineView). To generate these models, EOS images are used, and 3D surface spine models are reconstructed. Then, a
Summary. This work proposes a novel, automatic method to obtain an anatomical reconstruction for 3D segmented bones with large acetabular defects. The method works through the fitting of a
Pre-operative 3D glenoid planning improves component placement in terms of version, inclination, offset and orientation. Version and inclination measurements require the position of the inferior angle. As a consequence, current planning tools require a 3D model of the full scapula to accurately determine the glenoid parameters.