Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 79 - 79
2 Jan 2024
Rasouligandomani M Chemorion F Bisotti M Noailly J Ballester MG
Full Access

Adult Spine Deformity (ASD) is a degenerative condition of the adult spine leading to altered spine curvatures and mechanical balance. Computational approaches, like Finite Element (FE) Models have been proposed to explore the etiology or the treatment of ASD, through biomechanical simulations. However, while the personalization of the models is a cornerstone, personalized FE models are cumbersome to generate. To cover this need, we share a virtual cohort of 16807 thoracolumbar spine FE models with different spine morphologies, presented in an online user-interface platform (SpineView). To generate these models, EOS images are used, and 3D surface spine models are reconstructed. Then, a Statistical Shape Model (SSM), is built, to further adapt a FE structured mesh template for both the bone and the soft tissues of the spine, through mesh morphing. Eventually, the SSM deformation fields allow the personalization of the mean structured FE model, leading to generate FE meshes of thoracolumbar spines with different morphologies. Models can be selectively viewed and downloaded through SpineView, according to personalized user requests of specific morphologies characterized by the geometrical parameters: Pelvic Incidence; Pelvic Tilt; Sacral Slope; Lumbar Lordosis; Global Tilt; Cobb Angle; and GAP score. Data quality is assessed using visual aids, correlation analyses, heatmaps, network graphs, Anova and t-tests, and kernel density plots to compare spinopelvic parameter distributions and identify similarities and differences. Mesh quality and ranges of motion have been assessed to evaluate the quality of the FE models. This functional repository is unique to generate virtual patient cohorts in ASD. Acknowledgements: European Commission (MSCA-TN-ETN-2020-Disc4All-955735, ERC-2021-CoG-O-Health-101044828)


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 35 - 35
1 Dec 2022
Montanari S Griffoni C Cristofolini L Brodano GB
Full Access

Mechanical failure of spine posterior fixation in the lumbar region Is suspected to occur more frequently when the sagittal balance is not properly restored. While failures at the proximal extremity have been studied in the literature, the lumbar distal junctional pathology has received less attention. The aim of this work was to investigate if the spinopelvic parameters, which characterize the sagittal balance, could predict the mechanical failure of the posterior fixation in the distal lumbar region. All the spine surgeries performed in 2017-2019 at Rizzoli Institute were retrospectively analysed to extract all cases of lumbar distal junctional pathology. All the revision surgeries performed due to the pedicle screws pull-out, or the breakage of rods or screws, or the vertebral fracture, or the degenerative disc disease, in the distal extremity, were included in the junctional (JUNCT) group. A total of 83 cases were identified as JUNCT group. All the 241 fixation surgeries which to date have not failed were included in the control (CONTROL) group. Clinical data were extracted from both groups, and the main spinopelvic parameters were assessed from sagittal standing preoperative (pre-op) and postoperative (post-op) radiographs with the software Surgimap (Nemaris). In particular, pelvic incidence (PI), sagittal vertical axis (SVA), pelvic tilt (PT), T1 pelvic angle (TPA), sacral slope (SS) and lumbar lordosis (LL) have been measured. In JUNCT, the main failure cause was the screws pull-out (45%). Spine fixation with 7 or more levels were the most common in JUNCT (52%) in contrast to CONTROL (14%). In CONTROL, PT, TPA, SS and PI-LL were inside the recommended ranges of good sagittal balance. For these parameters, statistically significant differences were observed between pre-op and post-op (p<0.0001, p=0.01, p<0.0001, p=0.004, respectively, Wilcoxon test). In JUNCT, the spinopelvic parameters were out of the ranges of the good sagittal balance and the worsening of the balance was confirmed by the increase in PT, TPA, SVA, PI-LL and by the decrease of LL (p=0.002, p=0.003, p<0.0001, p=0.001, p=0.001, respectively, paired t-test) before the revision surgery. TPA (p=0.003, Kolmogorov-Smirnov test) and SS (p=0.03, unpaired t-test) differed significantly in pre-op between JUNCT and CONTROL. In post-op, PI-LL was significantly different between JUNCT and CONTROL (p=0.04, unpaired t-test). The regression model of PT vs PI was significantly different between JUNCT and CONTROL in pre-op (p=0.01, Z-test). These results showed that failure is most common in long fused segments, likely due to long lever arms leading to implant failure. If the sagittal balance is not properly restored, after the surgery the balance is expected to worsen, eventually leading to failure: this effect was confirmed by the worsening of all the spinopelvic parameters before the revision surgery in JUNCT. Conversely, a good sagittal balance seems to avoid a revision surgery, as it is visible is CONTROL. The mismatch PI-LL after the fixation seems to confirm a good sagittal balance and predict a good correction. The linear regression of PT vs PI suggests that the spine deformity and pelvic conformation could be a predictor for the failure after a fixation


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 128 - 128
1 Nov 2021
Stallone S Trisolino G Zarantonello P Ferrari D Papaleo P Napolitano F Santi GM Frizziero L Liverani A Gennaro GLD
Full Access

Introduction and Objective. Virtual Surgical Planning (VSP) is becoming an increasingly important means of improving skills acquisition, optimizing clinical outcomes, and promoting patient safety in orthopedics and traumatology. Pediatric Orthopedics (PO) often deals with the surgical treatment of congenital or acquired limbs and spine deformities during infancy. The objective is to restore function, improve aesthetics, and ensure proper residual growth of limbs and spine, using osteotomies, bone grafts, age-specific or custom-made hardware and implants. Materials and Methods. Three-dimensional (3D) digital models were generated from Computed Tomography (CT) scans, using free open-source software, and the surgery was planned and simulated starting from the 3D digital model. 3D printed sterilizable models were fabricated using a low-cost 3D printer, and animations of the operation were generated with the aim to accurately explain the operation to parents. All procedures were successfully planned using our VSP method and the 3D printed models were used during the operation, improving the understanding of the severely abnormal bony anatomy. Results. The surgery was precisely reproduced according to VSP and the deformities were successfully corrected in eight cases (3 genu varum in Blount disease, 2 coxa vara in pseudo achondroplasia, 1 SCFE, 1 missed Monteggia lesion and 1 post-traumatic forearm malunion deformity). In one case, a focal fibrocartilaginous dysplasia, the intraoperative intentional undersizing of the bone osteotomy produced an incomplete correction of a congenital forearm deformity. Conclusions. Our study describes the application of a safe, effective, user-friendly, VSP process in PO surgery. We are convinced that our study will stimulate the widespread adoption of this technological innovation in routine clinical practice for the treatment of rare congenital and post-traumatic limb deformities during childhood


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 81 - 81
1 Mar 2021
Roth AK Willem PC van Rhijn LW Arts JJ Ito K van Rietbergen B
Full Access

Currently, between 17% of patients undergoing surgery for adult spinal deformity experience severe instrumentation related problems such as screw pullout or proximal junctional failure necessitating revision surgery. Cables may be used to reinforce pedicle screw fixation as an additive measure or may provide less rigid fixation at the construct end levels in order to prevent junctional level problems. The purpose of this study is to provide insight into the maximum expected load during flexion in UHMWPE cable in constructs intended for correction of adult spine deformity (degenerative scoliosis) in the PoSTuRe first-in-man clinical trial. Following the concept of toppinoff, a new construct is proposed with screw/cable fixation of rods at the lower levels and standalone UHMWPE cables at the upper level (T11). A parametric FE model of the instrumented thoracolumbar spine, which has been previously validated, was used to represent the construct. Pedicle screws are modeled by assigning a rigid tie constraint between the rod and the lamina of the corresponding spinal level. Cables are modeled using linear elastic line elements, fixing the rod to the lamina medially at the cranial laminar end and laterally at the caudal laminar end. A Youngs modulus was assigned such that the stiffness of the line element was the same as that of the cable. An 8 Nm flexion moment was applied to the cranial endplate. The maximum value of the force in the wire (80 N) is found at the T11 (upper) level. At the other levels, forces in the cable are very small because most of the force is carried by the screw (T12) or because the wires are force shielded by the contralateral and adjacent level pedicle screws (L2, L3). The model provides first estimates of the forces that can be expected in the UHMWPE cables in constructs for kyphosis correction during movement. It is expected that this approach can help in defining the number of wires for optimal treatment


Bone & Joint 360
Vol. 3, Issue 2 | Pages 28 - 29
1 Apr 2014
El-Hawary R