Adverse events (AEs) are still a major problem in spinal surgery, despite advances in surgical techniques, innovative technologies available and the introduction of checklist and predictive score systems aimed at reducing surgical complications. We previously analysed the results of the introduction of the WHO Safety Surgical Checklist (SSC) in our Institution, comparing the incidence of complications between two periods: from January to December 2010 (without checklist) and from January 2011 and December 2012 (with checklist), in order to assess the checklist effectiveness. The sample size was 917 patients with an average of 30 months of follow-up. Complications were observed in 107 patients (11.6%) among 917 spinal surgery procedures performed, with 159 (17.3%) complications in total. The overall incidence of complications for trauma, infectious pathology, oncology, and degenerative disease was 22.2%, 19.2%, 18.4%, and 15.3%, respectively. We observed a reduction of the overall incidence of complications following the introduction of the WHO Surgical Checklist: in 2010 without checklist, the incidence of complications was 24.2%, while in 2011 and 2012, following the checklist introduction, the incidence of complications was 16.7% and 11.7%, respectively (mean 14.2%) (p<0.0005). Thus, the SSC appeared to be an effective tool to reduce complications in spinal surgery and we proposed to extend the use of checklist system also to the pre-operative and post-operative phases in order to further reduce the incidence of complications. We also believe that a correct capture and classification of complications is fundamental to generate a clinical decision support system aimed at improving patients’ safety in spinal surgery. In the period between January 2017 and January 2018 we prospectively recorded the adverse events and complications of patients undergoing spinal surgery in our department, without using any collection system. Then we retrospectively recorded the intraoperative and postoperative adverse events of surgically treated patients during the same one-year period, using the SAVES v2 system introduced by Rampersaud and collaborators (Rampersaud YR et al. J Neurosurg Spine 2016 Aug; 25 (2): 256-63) to classify them. In the one-year period from January 2017 to January 2018 a total of 336 patients underwent spinal surgery: 223 for degenerative conditions and 113 for
In case of spine tumors, when en bloc vertebral column resection (VCR) is indicated and feasible, the segmental defect should be reconstructed in order to obtain an immediate stability and stimulate a solid fusion. The aim of this study is to share our experience on patients who underwent
Summary Statement. Tandem stenosis is a prevalent condition in an Asian population with the narrowest cervical canal diameters and risk factors include advanced age and increased levels of lumbar canal stenosis. Introduction. Tandem spinal stenosis (TSS) is defined as patient with concomitant spinal canal stenosis found in both cervical (C) and lumbar (L) spinal region. Few studies have reported the incidence of TSS is ranged from 5–25%, but these are all noncomparative, small cohort studies. To the best of author knowledge this is the 1st study aims to compare the prevalence of TSS and its risk factors of development in a large multiracial Asian population. Methods. A retrospective review of all mid-sagittal T2MRI whole spine image was carried out at a University hospital in year 2007. Patients with
Summary. This is the first ever study to report the successful elimination of malignant cells from salvaged blood obtained during metastatic spine tumour surgery using a leucocyte depletion filter. Introduction. Catastrophic bleeding is a significant problem in metastatic spine tumour surgery (MSTS). However, intaoperative cell salvage (IOCS) has traditionally been contraindicated in tumour surgery because of the theoretical concern of promoting tumour dissemination by re-infusing tumour cells into the circulation. Although IOCS has been extensively investigated in patients undergoing surgery for gynaecological, lung, urological, gastrointestinal, and hepatobiliary cancers, to date, there is no prior report of the use of IOCS in MSTS. We conducted a prospective observational study to evaluate whether LDF can eliminate tumour cells from blood salvaged during MSTS. Patients & Methods. After Institutional Review Board (IRB) approval, 21 consecutive patients with metastatic
Summary. Our meta-analysis showed that pooled mean blood loss during spinal tumour surgeries was 2180 ml. Standardised methods of calculating and reporting intra-operative blood loss are needed as it would be beneficial in the pre-operative planning of blood replenishment during surgery. Introduction. The vertebral column is the commonest site of bony metastasis, accounting for 18,000 new cases in North America yearly. Patients with spinal metastasis are often elderly, have compromised cardiovascular status, poor physiological reserve and altered immune status, all of which render them more susceptible to the complications of intra-operative blood loss and associated transfusion. Currently no consensus exists regarding the expected volume of blood lost during metastatic spine tumour surgery with various papers quoting anywhere between 1L to 6L. Knowledge of the expected blood loss prior to surgery however is important as it facilitates pre-operative planning, intra- and post-operative management of fluid balance and blood transfusion. We conducted a meta-analysis of published literature on spine tumour surgery to answer the question: “What is the expected blood loss in major spinal tumour surgery for metastatic spinal disease?”. Methods. A comprehensive online search of the English literature using Medline, Embase, and the Cochrane Central Register of Controlled Trials was performed. We included articles published from 31 January 1992 until 31 January 2012. This initial online search yielded 98 relevant articles. Two senior investigators independently reviewed all abstracts. The full text of articles that were deemed eligible for further consideration obtained and reviewed. Eighty five articles were excluded at this stage, largely due to lack of clear blood loss data, leaving 13 eligible articles. A hand search of the reference lists of relevant articles yielded 5 more articles. A total of 18 articles were included in the final meta-analysis of blood loss data. Disagreements regarding eligibility of articles for analysis were resolved by consensus. Selected articles for final analysis were independently graded according to the Centre for Evidence-Based Medicine (CEBM) Levels of Evidence. We evaluated the possibility of publication bias by obtaining a funnel plot (created by plotting the sample size against the effect estimate). The Egger's regression asymmetry test was used to assess the existence of publication bias. Results. Eighteen selected articles had a total of 785 patients who had undergone major spine tumour surgery for metastatic spinal disorders. The pooled estimate of the blood loss occurring during spinal tumour surgeries was calculated to be 2180ml (95%CI: 1805–2554ml). Apart from two studies which reported significant mean blood loss of more than 5500 ml, the resulting funnel plot suggested absence of publication bias. This was confirmed by Egger's test which did not show any small-study effects (p=0.119). However, there was strong evidence of heterogeneity between studies with I2=90% (p<0.001). Conclusions. The expected blood loss of a patient undergoing major surgery for
The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each vertebra in 25 human cadaver vertebrae. The dorsal vertebral cortex and subcortical bone corresponding to the entrance site of the screw were removed on one side and preserved on the other. Biomechanical testing showed that the mean peak pull-out strength for the inserted screws, following removal of the dorsal cortex, was 956.16 N. If the dorsal cortex was preserved, the mean peak pullout strength was 1295.64 N. The mean increase was 339.48 N (26.13%; p = 0.033). The bone mineral density correlated positively with peak pull-out strength. Preservation of the dorsal vertebral cortex at the site of insertion of the screw offers a significant increase in peak pull-out strength. This may result from engagement by the final screw threads in the denser bone of the dorsal cortex and the underlying subcortical area. Every effort should be made to preserve the dorsal vertebral cortex during insertion of transpedicular screws.