Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 74 - 74
1 Jul 2014
Brandolini N Kapur N Hall R
Full Access

Summary Statement. Burst fractures were simulated in vitro on human cadaveric spine segments. Displacement of the facet joints and pedicles were measured throughout the fracture process showing how these bony structures behave when an impact load is delivered. Introduction. Burst fractures account for almost 30% of all spinal injuries, which may result in severe neurological deficit, spinal instability and hence life impairment. 1. The onset of the fracture is usually traumatic, caused by a high-energy impact loading. Comminution of the endplates and vertebral body, retropulsion of fragments within the canal and increase of the intrapedicular distance are typical indicators of the injury. Experimental and numerical studies have reported strain concentration at the base of the pedicles, suggesting that the posterior processes play a fundamental role in the fracture initiation. 2,3. However, little is known about the dynamic behaviour of the vertebra undergoing an impact load. The aim of this study was to provide an in vitro cadaveric investigation on burst fracture, focusing on the widening of the facet joints and pedicles during the fracture development. Methods. Eight three-adjacent-vertebrae segments (T9-T10-T11, T12-L1-L2, L3-L4-L5) were harvested from three human spines preserving the ligaments and intervertebral discs. A testing frame was designed to hold the sample whilst undergoing an axial impact load (delivered through a drop-weight rig). Lateral displacement was recorded by two transducers (LVDT) sampled at 5000 Hz and data were used to calculate the percent maximum dynamic widening (MW) and percent residual widening after the impact (RW). LVDTs were positioned in contact with the most lateral region of the cranial facet joints where the central vertebra was lumbar; or posteriorly to the base of the pedicles for thoracic. Samples were divided into two groups to achieve two different grade of severity of the fracture by delivering two different amount of energy: High (HE) and Low (LE). Samples underwent HR-pQCT scanning prior and after fracturing to assess percent canal narrowing (CN), intrapedicular distance and grade the fracture. Differences between results were assessed using Mann-Whitney U test. Results. Burst fractures were induced in all the samples (fragment retropulsion was present in all HE samples). The median energy delivered to each group was 206J (HE) and 148J (LE) which led to a significant difference in the median CN (HE: 32.4%; LE: 11.8%; p=0.029). No significant difference was found between HE and LE in terms of MW (p=0.11), or RW (p=0.85). Furthermore, MW and CN were poorly correlated (R. 2. =0.13). In all the cases, the first peak in the widening data coincided with MW (median 12.8%, range 4.3–21.8%). RW measurements (median 2.8%, range −1.3–11.5%) were validated against HR-pQCT scans showing excellent agreement (R. 2. =0.93). Discussion/Conclusion. Results from this study provided further insight on the burst fracture process supporting the wedging effect of the adjacent facet joints when the impact load is transmitted. Indeed, the pedicles were forced to widen up to a critical value (MW), after which they fractured. Further experiments will help clarifying the influence of the amount of energy delivered


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 218 - 218
1 Jul 2014
Huber G Nagel K Skrzypiec DM Klein A Püschel K Morlock MM
Full Access

Summary. Lumbar spinal specimens exhibited high fatigue strength. The cycles to failure are not only dependent on the maximum peak load, but also on the load offset or the amplitude, respectably. Introduction. Spinal injury might be caused by whole body vibrations. The permitted exposure to vibration in the workplace is therefore limited. However, there is a lack in knowledge how external vibrations might cause internal damages. Numerical whole body models might provide the potential to estimate the dynamic spinal loading during different daily activities, but depends on knowledge about the corresponding fatigue strength. This study is aiming to determine the in vitro fatigue strength of spinal specimens from donors of working age. Patients & Methods. Lumbar functional spinal units (L2/L3 and L4/L5) from midlife donors (45–65 yrs, n = 24) and young donors (20–45 yrs, n = 6) were collected and stored deep frozen. CT scans were obtained to determine the endplate area and the bone mineral density of the vertebrae. Their product is referred to as vertebral capacity (VC). Muscles were removed from the thawed specimens, but apart from the transversal ligaments, all ligaments and the intervertebral disc were left intact. During the experiments, the specimens were immersed in saline solution (37°C) containing antibiotics (PAA, Austria) to reduce biological degeneration. After preconditioning (2.5 h) the specimens were exposed to continuous sinusoidal axial compression (5Hz, <300,000 cycles). Distinct changes in the characteristic creep curve of specimens’ height indicated fatigue failure. Specimens of midlife donors were equally assigned to three groups with different peak-to-peak loads (NORM: 0–2 kN; HIGH: 0–3 kN; OFFSET: 1–3 kN), while specimens from young donors were solely assigned to the HIGH group, since a previous study [1] had shown that young specimens hardly failed for NORM loading conditions. Findings from that previous study (midlife, n = 6; young, n = 6) were merged to NORM for analyses. Results. Within the NORM group, specimens only failed within 300,000 cycles when VC was below 2,000 cm. 2. mg K. 2. HPO. 4. /ml (8 of 20). Within the HIGH group, endplate failure occurred frequently within the test duration (10 of 13; 1 excluded). For the OFFSET group, specimen failure was occasionally observed (4 of 7; 1 excluded). Exponential regression of cycles to failure dependent on VC showed significant correlations for the specimen loaded in the NORM and HIGH group (r. 2. NORM. = 0.57, p = 0.029; r. 2. HIGH. = 0.47, p = 0.029; r. 2. OFFSET. = 0.83, p = 0.091). Discussion/Conclusion. Specimens’ fatigue failure strength depends on load offset and amplitude. The group with higher loading amplitudes (HIGH: 1.5 kN) resisted fewer loading cycles than those with the smaller amplitude (OFFSET: 1 kN), even though the maximum peak was the same (3 kN). The exponential regression is conservative, since several specimens did not fail within the predicted loading cycles. Vertebral capacity might suitable predict the fatigue strength of specimens. Together with numerical modelling, these findings might promote the appraisal of occupational diseases and might help to determine the duty cycles for new implants. The funding of FIOSH, Germany is thankfully acknowledged (project F2059 and F2069)


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 3 | Pages 406 - 410
1 Mar 2006
Quinlan JF Watson RWG Kelly G Kelly PM O’Byrne JM Fitzpatrick JM

Injuries to the spinal cord may be associated with increased healing of fractures. This can be of benefit, but excessive bone growth can also cause considerable adverse effects.

We evaluated two groups of patients with fractures of the spinal column, those with neurological compromise (n = 10) and those without (n = 15), and also a control group with an isolated fracture of a long bone (n = 12). The level of transforming growth factor-beta (TGF-β), was measured at five time points after injury (days 1, 5, 10, 42 and 84).

The peak level of 142.79 ng/ml was found at day 84 in the neurology group (p < 0.001 vs other time points). The other groups peaked at day 42 and had a decrease at day 84 after injury (p ≤ 0.001).

Our findings suggest that TGF-β may have a role in the increased bone turnover and attendant complications seen in patients with acute injuries to the spinal cord.