Advertisement for orthosearch.org.uk
Results 1 - 20 of 59
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 29 - 29
1 Dec 2022
Tyrpenou E Lee D Robbins S Ippersiel P Antoniou J
Full Access

Hip instability is one of the most common causes for total hip arthroplasty (THA) revision surgery. Studies have indicated that lumbar fusion (LF) surgery is a risk factor for hip dislocation. Instrumented spine fusion surgery decreases pelvic tilt, which might lead to an increase in hip motion to accommodate this postural change. To the best of our knowledge, spine-pelvis-hip kinematics during a dynamic activity in patients that previously had both a THA and LF have not been investigated. Furthermore, patients with a combined THA and LF tend to have greater disability. The purpose was to examine spine-pelvis-hip kinematics during a sit to stand task in patients that have had both THA and LF surgeries and compare it to a group of patients that had a THA with no history of spine surgery. The secondary purpose was to compare pain, physical function, and disability between these patients. This cross-sectional study recruited participants that had a combined THA and LF (n=10; 6 females, mean age 73 y) or had a THA only (n=11; 6 females, mean age 72 y). Spine, pelvis, and hip angles were measured using a TrakSTAR motion capture system sampled at 200 Hz. Sensors were mounted over the lateral thighs, base of the sacrum, and the spinous process of the third lumbar,12th thoracic, and ninth thoracic vertebrae. Participants completed 10 trials of a standardized sit-to-stand-to-sit task. Hip, pelvis, lower lumbar, upper lumbar, and lower thoracic sagittal joint angle range of motion (ROM) were calculated over the entire task. In addition, pain, physical function, and disability were measured with clinical outcomes: Hip Disability Osteoarthritis Outcome Score (pain and physical function), Oswestry Low Back Disability Questionnaire (disability), and Harris Hip Score (pain, physical function, motion). Physical function performance was measured using 6-Minute Walk Test, Stair Climb Test, and 30s Chair Test. Angle ROMs during the sit-to-stand-to-sit task and clinical outcomes were compared between THA+LF and THA groups using independent t-tests and effect sizes (d). The difference in hip ROM was approaching statistical significance (p=0.07). Specifically, the THA+LF group had less hip ROM during the sit-to-stand-to-sit task than the THA only group (mean difference=11.17, 95% confidence interval=-1.13 to 23.47), which represented a large effect size (d=0.83). There were no differences in ROM for pelvis (p=0.54, d=0.28) or spinal (p=0.14 to 0.97; d=0.02 to 0.65) angles between groups. The THA+LF group had worse clinical outcomes for all measures of pain, physical function, and disability (p=0.01 to 0.06), representing large effect sizes (d=0.89 to 2.70). Hip ROM was not greater in the THA+LF group, and thus this is unlikely a risk factor for hip dislocation during this specific sit-to-stand-to-sit task. Other functional tasks that demand greater excursions in the joints should be investigated. Furthermore, the lack of differences in spinal and pelvis ROM were likely due to the task and the THA+LF group had spinal fusions at different levels. Combined THA+LF results in worse clinical outcomes and additional rehabilitation is required for these patients


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 47 - 47
1 Jul 2020
Johnstone B Ryaby J Zhang N Waldorff E Lin C Punsalan P Yoo J Semler E
Full Access

The range of allograft products for spinal fusion has been extended with the development of cellular bone matrices (CBMs). Most of these combine demineralized bone with viable cancellous bone prepared in a manner that retains cells with differentiation potential. The purpose of this study was to compare commercially-available human CBMs in the athymic rat model of posterolateral spinal fusion. The products compared were Trinity ELITE® (TEL, OrthoFix), ViviGen (VIV, DePuy Synthes), Cellentra (CEL, Zimmer Biomet), Osteocel® Pro (OCP, NuVasive), Bio4 (BIO, Stryker) and map3 (MAP, RTI Surgical). Bone from the ilia of syngeneic rats was used as a control to approximate the human gold standard. All implants were stored, thawed, and prepared per manufacturer's instructions and all implantations occurred within the manufacturer's time allowance for use after preparation. In total, fifteen 9–10 week old male rats were implanted per implant type, with three different lots of each implant used per five rats to account for lot-to-lot variability. Under anesthesia, a posterior midline longitudinal skin and subcutaneous incision was made, followed by bilateral longitudinal paraspinal myofascial incisions to expose the transverse processes at the L4–5 level. Implants (0.3 cc of allograft or freshly harvested syngeneic iliac bone graft) were placed bilaterally. Surgeons were blinded as to CBM implant type. Incisions were closed with sutures and in vivo microCT scans performed within 48 hours of surgery. A second microCT scan was taken at euthanasia, six weeks after surgery, and the lumbar spines harvested. Fusion was evaluated by manual palpation by three independent, blinded reviewers. MicroCT analysis was performed by an independent CRO (ImageIQ, Cleveland OH). Anonymity of implant type was rigorously kept to avoid bias. By manual palpation, 5/15 (33%) spines of the syngeneic bone group were fused at 6 weeks. The TEL (8/15, 53%) and CEL (11/15, 73%) groups were not significantly different from each other but were from all other CBM groups. Only 2/15 (13%) of VIV-implanted spines fused and none (0/15, 0%) of the OCP, BIO and MAP CBMs produced stable fusion. The mineralized cancellous bone component of the allografts confounded radiographic analysis but microCT analysis indicated bone volume increased over six weeks for all groups except the syngeneic bone (−4.3%). TEL (+65%) and CEL (+73%) were not different from each other but were significantly increased over all other groups (VIV 29%, OCP 37%, BIO 19%, and MAP 45%, respectively). CBMs have distinct formulations and are likely processed differently. The claimed live cell and stem cell contents differ between products. Additionally, map3 has cells added at the time of surgery, whereas the other CBMs are processed to retain matrix-adherent cells. Given the wide range of formulations, differences in performance were not surprising, and Trinity ELITE and Cellentra did significantly better than other implants at both forming new bone and achieving fusion. The other CBMs did not have greater bone formation than the control and were very poor at forming a solid fusion. These findings suggest more careful consideration of these allograft products is needed at the clinical level


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 24 - 24
1 Feb 2020
Walter L Madurawe C Gu Y Pierrepont J
Full Access

The functional pelvic tilt when standing and sitting forward of 7402 cases on the OPS, Optimized Ortho, Australia Data Base were reviewed. All patients had undergone lateral radiographs when standing simulating extension of the hip, and sitting forward when the hip is near full flexion. Pelvic tilt was measured as the angle of the Anterior Pelvic Plane to the vertical Sagittal Plane, rotation anteriorly being given a positive value. Pelvises that had rotated more than 13 degrees anteriorly (+ve) when sitting forward or posteriorly (-ve) when standing were considered to place the hip at increased risk of dislocation or edge loading when flexed or extending respectively. This degree of rotation has the effect of changing the acetabular version by approximately10. 0. Most safe zones that have been described have given a range of anteversion of 20. 0. as safe. A change of 10. 0. would potentially place the acetabular orientation outside this range. Further, clinical studies have supported this concept. All lateral radiographs were reviewed to confirm that 281 had undergone instrumented spinal fusion at some level between T12 and S1. There was a large variability in the number and the levels arthrodesed. The range of pelvic mobility in the non-arthrodesed group in extension was −37. 0. to 31. 0. (mean −0.9. 0. , Standard deviation 7.49) and in flexed position was −70. 0. to 49. 0. (mean −1.9. 0. , Standard deviation 14.01). For the group with any fusion the range of pelvic tilt in extension was −31. 0. to 22. 0. (mean −4. 0. , Standard deviation 8.21) and flexed −32. 0. to 46. 0. (mean 4.4. 0. , Standard deviation 13.79). Of the 7121 cases without instrumented fusion, 15.5% were considered to be at risk when in flexion and 6.1% when extended. The risk for those with any fusion was approximately doubled in both flexion and extension. Further, those with extensive arthrodesis from T12 to S1 had a range of pelvic tilts similar to the non-fused group, although they had a significantly higher percentage of cases in the ‘at risk’ zones. The proportion of the cases in the ‘at risk’ zones decreased progressively as the arthrodesed levels moved from L5/S1 to the upper lumbar spine, and with decreasing number of levels fused. Conclusion. Spinal fusion is not just one group as there are many combinations of different levels fused. Patients with instrumented spinal fusions do have a proportionately high risk of failure of their THR than the majority of cases with no instrumentation, though the risk varies significantly with the number of levels and actual levels arthrodesed. Further approximately 21% of cases with no spinal fusion have functional pelvic movements that would potentially place them ‘at risk’ of edge loading or dislocation. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 164 - 164
1 May 2012
Pak P Oliver R Bell D Yu Y Bellemore J Walsh W
Full Access

Posterolateral spinal fusion using autograft in adult rabbits has been reported by many groups using the Boden model. Age in general has an adverse effect on skeletal healing; although, its role in posterolateral fusion is not well understood. This study examined the influence of animal age on spinal fusion using a standard model and experimental endpoints. We hypothesised that fusion quality and quantity would be less with increasing age. A single level posterolateral fusion between the fifth and sixth lumbar segments were performed in six-month and two-year-old New Zealand white rabbits (n=6 per group) using morcelized iliac crest autograft. All animals were sacrificed at 12 weeks following surgery. Posteroanterior Faxitron radiographs and CT scans were taken and DICOM data was analysed (MIMICS Version 12, Materialise, Belgium). Axial, sagittal, coronal and three-dimensional models were created to visualise the fusion masses. Bone mineral density (BMD) of the fusion mass was measured using a Lunar DPXL Dexa machine. An MTS Bionix testing machine was then used to assess peak load and stiffness. Sagittal and coronal plane histology was evaluated in a blinded fashion using H&E, Tetrachrome and Pentachrome stains. Assessment included overall bony response on and between the transverse processes. Radiographs and CT confirmed a more robust healing response in younger animals. Radiographic union rates decreased from 83% to 50% in the aged animals. A neo- cortex surrounding the fusion mass was observed in the younger group but absent in the aged animals. Fusion mass BMD and that of the vertebral body was decreased in the older animals (P<0.05). Tensile mechanical data revealed a 30% reduction in peak load (P=0.024) and 34% reduction in stiffness (P=0.073) in the two-year-old animals compared with the six-month-old animals. Histological evaluation demonstrated a reduction in overall biological activity in the two-year-old animals. This reduction in activity was observed in the more challenging intertransverse space as well as adjacent to the transverse processes and vertebral bodies at the decortication sites. Numerous sites of new bone formation was present in the middle of the fusion mass in the six-month-old animals while the bone graft in the two-year- old animals were less viable. Skeletal healing is complex and mediated by both local and systemic factors. This study demonstrated that ageing leads to an impaired and delayed skeletal repair. Where autograft is utilised, diminished graft osteoinductivity and reduced levels of growth factors and nutritional supply in the surrounding milieu explains our observations. The aged rabbit posterolateral spinal fusion model has not been previously described but would be a useful to evaluate new treatment modalities in a more challenging host environment


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 3 - 3
1 Sep 2012
Galibaro P Al-Munajjed A Dendorfer S Toerholm S Rasmussen J
Full Access

INTRODUCTION. Several clinical studies demonstrated long-term adjacent-level effects after implantation of spinal fusion devices[1]. These effects have been reported as adjacent joint degeneration and the development of new symptoms correlating with adjacent segment degeneration[2] and the trend has therefore gone to motion preservation devices; however, these effects have not been understood very well and have not been investigated thoroughly[3]. The aim of this study is to investigate the effect of varying the stiffness of spinal fusion devices on the adjacent vertebral levels. Disc forces, moments and facet joint forces were analyzed. METHODS. The AnyBody Modeling System was used to compute the in-vivo muscle and joint reaction forces of a musculoskeletal model. The full body model used in this study consists of 188 muscle fascicles in the lumbar spine and more than 1000 individual muscle branches in total. The model has been proposed by de Zee et al.[3], validated by Rasmussen et al.[4] and by Galibarov et al.[5]. The new model[5] determines the individual motions between vertebrae based on the equilibrium between forces acting on the vertebrae from muscles and joints and the passive stiffness in disks and ligaments, figure 1a. An adult of 1.75 m and 75 kg with a spinal implant in L4L5 was modeled. This model was subjected to a flexion-extension motion using different elastic moduli to analyze and compare to a non-implanted scenario. The analyzed variables were vertebral motion, the disc reaction forces and moments, as well as facet joint forces in the treated and the adjacent levels: L2L3, L3L4, L4L5 and L5-Sacrum. RESULTS. When introducing a spinal fusion device in the L4L5 joint the reaction forces and moments decreased in this joint with stiffer devices leading to lower joint loads. However, in the adjacent joints, L3L4 and L5Sacrum, an increase was observed when implanting stiffer devices. Similar trends could be found for the L2L3 joint. The loads in the facet joints showed the same trends. While introducing a spinal fusion device reduced the facet joint forces in the treated joint, the loads in the adjacent facet joints were increased according to the stiffness of the implanted device, figure 1b. DISCUSSION. While the treated disc joint showed reduced motion and loads, the adjacent levels demonstrated a significant increase. In particular, the increased facet joint forces in the adjacent levels can lead to adjacent level facet pain or accelerated facet joint degeneration. Introducing a device resulted in preventing facet contact and therefore facet joint loads, even using the device with the lowest stiffness. CONCLUSION. The presented model shows that clinical complications such as facet joint degeneration in adjacent levels after implantation of spinal fusion device are consistent with the change in the mechanical-stimulus distribution in the system


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 146 - 146
1 Feb 2017
McEntire B Jones E Bock R Ray D Bal B Pezzotti G
Full Access

Introduction. Periprosthetic infections are leading causes of revision surgery resulting in significant increased patient comorbidities and costs. Considerable research has targeted development of biomaterials that may eliminate implant-related infections. 1. This in vitro study was developed to compare biofilm formation on three materials used in spinal fusion surgery – silicon nitride, PEEK, and titanium – using one gram-positive and one gram-negative bacterial species. Materials and Methods. Several surface treated silicon nitride (Si. 3. N. 4. , MC2. ®. , Amedica Corporation, Salt Lake City, UT), poly-ether-ether-ketone (PEEK, ASTM D6262), and medical grade titanium (Ti6Al4V, ASTM F136) discs Ø12.7 × 1mm were prepared or acquired for use in this well-plate study. Each group of discs (n=3) were ultrasonically cleaned, UV-sterilized, inoculated with 10. 5. Staphylococcus epidermidis (ATCC. ®. 25922™) or Escherichia coli (ATCC. ®. 14990™) and placed in a culture medium of phosphate buffered saline (PBS) containing 7% glucose and 10% human plasma on a shaking incubator at 37°C and 120 rpm for 24 or 48 hrs. Coupons were retrieved, rinsed in PBS to remove planktonic bacteria, placed in a centrifuge with fresh PBS, and vortexed. The bacterial solutions were serially diluted, plated, and incubated at 37°C for 24 to 48 hrs. Colony forming units (CFU/mm. 2. ) were counted using applicable dilution factors and surface areas. A two-tailed, heteroscedastic Student's t-test (95% confidence) was used to determine statistical significance. Results. Biofilm adhesion results are provided in Figures 1 and 2 for S. epi. and E. coli, respectively. For S. epi. at 24 hrs, biofilm growth on PEEK was about three orders of magnitude greater than on Ti6Al4V or any Si. 3. N. 4. material (all p<0.005). Ti6Al4V also had more bacteria than the Si. 3. N. 4. samples, but was only significant for as-fired and nitrogen-annealed treatments. Similar trends and significance for S. epi. were observed at 48 hrs. For E. coli, biofilm formation on PEEK was significantly greater than all other materials at both 24 and 48 hrs. Bacterial growth on Ti6Al4V was also statistically greater than all Si. 3. N. 4. conditions, with the possible exception of nitrogen-annealed Si. 3. N. 4. By 48 hrs, PEEK remained 2 orders of magnitude above Ti6Al4V, and 2.5–3 orders of magnitude greater than the Si. 3. N. 4. conditions. Ti6Al4V was also significantly greater than all of the Si. 3. N. 4. treatments at 48 hrs. Discussion. Si. 3. N. 4. , PEEK, and Ti6Al4V surfaces demonstrated significant differences in bacterial adhesion and proliferation for both gram-positive S. epi. and gram-negative E. coli, particularly at 48 hrs post-inoculation. The various Si. 3. N. 4. samples showed the most favorable bacterial resistance for both species tested. The exact mechanism of the bacteriostatic behavior of Si. 3. N. 4. is still under investigation; but it may result from chemical interaction with the material's surface to form peroxynitrite (a powerful oxidative agent). 2. Conclusion. Identifying biomaterial surfaces that resist biofilm adhesion is an important emerging strategy in addressing implant-related infections. Si. 3. N. 4. is a new biomaterial with the apparent potential to suppress biofilm formation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 32 - 32
1 Jan 2016
McEntire B Bock R Rahaman M Bal BS Webster T Pezzotti G
Full Access

Silicon nitride spinal fusion cages have been successfully used in the treatment or correction of stenosis, disc herniation, trauma, and other deformities of the spinal column since 2008. To date over 14,000 devices have been implanted with perioperative and postoperative complication rates of less than 0.2%. This remarkable achievement is due in part to the material itself. Silicon nitride is an ideal interbody material, possessing high strength and fracture toughness, inherent phase stability, biocompatibility, hydrophilicity, excellent radiographic imaging, and bacterial resistance. These characteristics can lead to implants that aid in prevention of nosocomial infections and achieve rapid osteointegration. In this paper, we will review the various in vitro and in vivo studies that demonstrate silicon nitride's effective bacteriostatic and osteointegration characteristics, and compare these to the two most common cage materials – titanium and poly-ether-ether-ketone (PEEK). Human case studies will be also reviewed to contrast the clinical performance of these biomaterials. In comparison to the traditional devices, silicon nitride shows lower infection rates, higher bone apposition, and essentially no fibrous tissue growth on or around the implant. To better understand the mechanisms underlying these benefits, surface characterization studies using scanning electron microscopy coupled with XPS chemical analyses, sessile water drop techniques and streaming zeta potential measurements will be reported. Data from these studies will be discussed in relation to the physiochemical reasons for the observed behavior. Silicon nitride is a non-oxide ceramic in its bulk; but possesses a protective Si-N-O transitional layer at its surface. It will be shown that the chemistry and morphology of this layer can be modified in composition, thickness and structure resulting in marked changes in chemical species, surface charge, isoelectric points and wetting behavior. It is postulated that the needle-like grain structure of silicon nitride coupled with its enhanced wettability play important roles in inhibiting biofilm formation, while its surface chemical environment consisting of silicon diimide Si(NH). 2. , silicic acid Si(OH). 4. , and derivatives of ammonia, NH. 3. , NH. 4. OH, lead to improved bone reformation and bacteriostasis, respectively. Few materials have this combination of properties, making silicon nitride a unique biomaterial that provides improved patient care and outcomes with low comorbidities


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 186 - 186
1 Jan 2013
Sharma H Murray N Gibson M
Full Access

Introduction. There are controversies in the literature about thoracoplasty and its effect on lung function changes. The aim of the study was to evaluate the effect and outcome of thoracoplasty in conjunction with pedicle screw construct in the treatment of thoracic adolescent idiopathic scoliosis on lung functions. Materials and methods. It is a retrospective study of consecutive series of 62 patients with thoracic adolescent idiopathic scoliosis surgically treated by single surgeon between 2007 and 2008 at a tertiary referral Orthopaedic Spinal unit. Posterior spinal fusion and thoracoplasty (n=32, all but one girls) were compared with 30 without thoracoplasty (all but one girls). Clinical and radiographic analysis was performed, including the SRS-30 questionnaire and Pulmonary Function Tests (PFT). Absolute and percent-predicted values of forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and total lung capacity (TLC) were evaluated preoperatively and at 3-months, 1 year and/or 2-year follow-up, and comparisons were made between two groups. The minimum follow-up was one year. Results. No statistical differences were found between the two groups in PFT's both pre-operatively and at latest follow up ranging 1 to 3 years. Our findings suggest that thoracoplasty did not adversely affected long-term PFT's in AIS patients compared to patients treated by posterior spinal fusion alone. Three-month postoperative pulmonary function test values in both groups experienced 15–30% decline which returned to the preoperative baseline at 1 year in > 90% patients. In thoracoplasty group, 5 to 8 ribs were resected and used for bone graft. Chest complications were observed in 2 patients requiring chest drainage. Prolonged donor site morbidity was noted in 3 patients. Conclusions. Thoracoplasty showed comparable clinical and radiological correction without any significant pulmonary function compromise. Pulmonary function test values returned to the preoperative baseline at 1 year in > 90% patients


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 165 - 165
1 May 2012
Alcorace G Oliver R Yu Y Stanford R
Full Access

Single level posterolateral spinal fusion in rabbits is the accepted preclinical model for evaluating bone graft substitutes or treatments to enhance/augment healing. This study aimed to improve preclinical testing by developing a multi-level unilateral fusion model that could be used as a screening tool prior to larger scale preclinical experiments. A four level unilateral posterolateral fusion was performed in nine animals. The materials were randomly allocated and placed between the decorticated surfaces of the transverse processes and vertebral bodies. Animals were euthanised at three, six and 12 weeks. The materials were (1) 25 kGy y-irradiated rabbit allograft chips (RAC), (2) SCF RAC, (3) 60% tri-calcium phosphate, 40% hydroxyapatite formagraft (BiOstetic) (4) Autograft (1.5 cc morsellised to 1-2.5 mm granules). The autograft was harvested from the iliac crest using the L5-L6 incision. Endpoints included x-ray, CT, micro CT and histology. The animals tolerated the surgery well. Radiographic data provided a useful method to differentiate between groups. Micro CT however was extremely valuable demonstrating new bone formation as early as three weeks across the groups. Gamma irradiated samples demonstrated an initial inflammatory reaction while the autograft, SCF allograft and synthetic TCP did not show this response. As expected, time was an important factor demonstrating the maturity in the fusions. These materials responded in a similar fashion in this model as observed in a single level fusion. A unilateral multi-level fusion can be performed in rabbits to provide a useful screening for different materials. Gamma irradiated allograft has an initial inflammatory reaction that may be related to the presence of residual cellular material whereas SCF and synthetic materials do not


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 61 - 61
1 Sep 2012
Robertson P Cunningham J
Full Access

Posterior lumber interbody fusion (PLIF) has the theoretical advantage of optimising foraminal decompression, improving sagittal alignment and providing a more consistent fusion mass in adult patients with isthmic spondylolisthesis (IS) compared to posterolateral fusion (PLF). Previous studies with only short-term follow-up have not shown a difference between fusion techniques. An observational cohort study was performed of a single surgeon's patients treating IS over a ten year period (52 patients), using either PLF (21 pts) or PLIF (31pts). Preoperative and 12-month data were collected prospectively, and long-term follow-up was by mailed questionnaire. Preoperative patient characteristics between the two groups were not significantly different. Average follow-up was 7 years, 10 months, and 81% of questionnaires were returned. Outcome measures were Roland Morris Disability Questionnaire (RMDQ), Low Back Outcome Score (LBOS), SF-12v2 and SF-6D R2. The SF-6D R2 is a “whole of health” measure. PLIF provided better short- and long-term results than PLF. The PLIF group had significantly better LBOS scores in the long term, and non-significantly better RMDQ scores in the long term. As measured by RMDQ Minimum Clinically Important Difference (MCID) short term set at 4, RMDQ MCID set at 8, the LBOS MCID set at 7.5 points and by SF-12v2 physical component score (PCS), PLIF patients performed better than PLF patients. When analysing single level fusions alone, the difference is more pronounced, with PCS, mental component scores and SF-6D R2 all being significantly better in the PLIF group rather than the PLF group. This paper strongly supports the use of PLIF to obtain equivalent or superior clinical outcomes when compared to PLF for spinal fusion for lumbar isthmic spondylolisthesis. The results of this study are the first to report to such long-term follow-up comparing these two procedures


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 203 - 203
1 Sep 2012
Soroceanu A Oxner W Alexander D Shakespeare D
Full Access

Purpose. Bone morphogenic protein (BMP-2) is used in spinal arthrodesis to induce bone growth. Studies have demonstrated that it achieves similar fusion rates compared to iliac crest bone graft when used in instrumented fusions. Our study aims at evaluating the requirement for instrumentation in one and two-level spinal arthrodeses when BMP-2 is used in conjunction with local bone to achieve fusion. Method. 50 patients were recruited and randomized to instrumented versus non-instrumented spinal arthrodesis. BMP-2 with local autologous bone was used in all patients. Patients are evaluated at 3-months, 6-months, 12-months, and 24-months postoperatively with questionnaires to assess clinical outcome (ODI, VAS and SF-36), and PA and lateral x-rays of the spine to assess radiographic fusion (Lenke score). At 24 months, a thin-cut (1mm) CT scan was performed. Results. Two-year data is available on 40 patients. There were no statistically significant differences between the two groups based on the clinical outcomes measured. The ODI 22.55.1 for the instrumented group vs. 13.733.57 for the non-instrumented group (p=0.2)). The VAS for the instrumented group was 2.110.61 vs. 1.530.61 for the non-instrumented group (p=0.49). The SF-36 (physical) was 62.316.71 for the instrumented group vs 54.665.43 for the study group (p=0.8). The operating time was 105.85.91 minutes for the instrumented group versus 88.63.61 minutes for the non-instrumented group (p=0.01). Blood loss was 339.139.38 cc for the instrumented group vs 273.133.8 cc for the non-instrumented group (p=0.1). Preliminary radiographic analysis showed similar fusion rates for the two groups. Two-year follow-up on all patients will be completed by February 2010. Final clinical and radiographic data analysis will be presented at the meeting. Conclusion. BMP-2 and local bone graft demonstrated functionally equivalent clinical outcomes when used with or without instrumentation in lumbar spinal fusions while offering potential reduction in operative time and blood loss


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 63 - 63
1 Feb 2012
Crawford R Crawford J Carey-Smith R Hilton J
Full Access

Surgery for degenerative lumbar spondylolisthesis may entail both decompression and fusion. The knee-chest position facilitates the decompression, but fixation in this position risks fusion in kyphosis. This can be avoided by intra-operative re-positioning to the prone position. The aim of this study was to quantify the restoration of lordosis achieved by intra-operative repositioning and to assess the clinical and radiological outcome.

A total of forty consecutive patients with degenerative lumbar spondylolisthesis and stenosis were treated by posterior decompression and interbody fusion with pedicle screw fixation. The screw insertion, decompression and interbody grafting were performed with the patient in the knee-chest position. The patient was then re-positioned to the fully prone position for fusion. Sagittal plane angles were measured pre-, intra- and post-operatively. Clinical assessment was performed using SF-36 scores and visual analogue scores for back and leg pain.

The sagittal plane angle increased from median 16.0 degrees pre-operatively to 23.1 degrees post-operatively (p<0.01) and this was maintained at the last follow-up (mean 21 months). The SF-36 scores improved for 7 out of 8 domains and the physical score improved from 29% to 40% (p<0.05). The mean pain scores improved significantly from 7.5 to 3.8 for back pain and from 7.6 to 3.7 for leg pain (p<0.001).

Lumbar spondylolisthesis was found to be associated with a reduction of normal lumbar lordosis and the knee-chest position exacerbates this loss of lordosis. Intra-operative repositioning restored lordosis to greater than the pre-operative angle and was associated with a good clinical outcome.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 64 - 64
1 Sep 2012
Humad A Freeman B Moore R Callary S Halldin K
Full Access

Anterior lumbar inter-body fusion (ALIF) is a surgical procedure that is available to chronic lower back pain patients who fail to respond to conservative treatments. Failure to achieve fusion may result in persistence of pain. Fusion of the lumber vertebral segment is more accurately assessed using fine-cut helical Computed tomography (CT) scans (0.25 mm thickness slices). Unfortunately this technique exposes the body to high radiation dose with hazard of increase risk of late malignancy. An alternative imaging tool is radiostereometry (RSA) which developed as a means to determine the magnitude of relative motion between two rigid bodies. In this study we used RSA to detect movement at the fused lumbar segment (ALIF site) during flexion and extension and compare the results obtained with fine-cut helical CT scan using histopathology as final gold standard assessment tool.

ALIF of three levels of lumbar spine (L1-L2, L3-L4, and L5-L6) was done in 9 sheep. The sheep divided into three groups (3sheep each). The first group had RSA assessment immediately, 3, and 6 months after surgery. The second group had RSA immediately, 3, 6, 9 months after surgery. The third group had an RSA immediately, 3, 6, 9, 12 months after surgery All the animals were humanly killed immediately after having the last scheduled RSA (group1, group2, and group 3 sheep were killed 6 month, 9month and 12 months after surgery respectively). This followed by in vitro fine cut CT and histopathology after the animals are scarified. Micro CT scan has been also used to identify the area where histopathology slide should be made to pick up fusion. Fine cut CT scan assessment for all sheep were done. The CT scan has been reported by two independent radiologists. Histopathology has been started and will finish in 2 weeks

RSA showed there was significant increasing stiffness of the spine though the fused segments as the time pass on compare to immediate postoperative assessment. CT scan were done and showed variable fusion though out the spinal segments. Histopathology of all sheep has been started and the results will be available in 2 weeks which will be followed by statistical assessment to decide how accurate RSA compare to CT scan in assessment of fusion.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 141 - 141
1 Jun 2012
Marzona L Sancin A
Full Access

Nowadays many new minimally invasive techniques are experienced to perform lower lumbar interbody fusion in attempt to decrease the complications related to open anterior approach. AxiaLIF (axial lumbar interbody fusion) system is a percutaneous transacral approach that exploits the virtual presacral retroperitoneal space to perform annulus-sparing discectomy and interbody instrumented fusion of lower lumbar disc spaces. Additioning posterior percutaneous instrumentation, a robust axial construct is placed which restores disc height, sagittal balance and lordosis with minimal muscle dissection, blood loss and postoperative pain.

Via fluoroscopically-guided approach, AxiaLIF procedure creates a presacral retroperitoneal corridor in the midline through a paracoccigeal skin incision of 2-3 cm. This space is void of neuro-vascular major elements. A safe working cannula is put in and docked in the S1-S1 entry level and a transacral channel is realized gaining the central space of the disc. A 360° annulus-sparing radial discectomy is performed with special cutters even in case of collapsed disc space and the bone graft is inserted. The following screwing of AxiaLIF rod restores disc height via distraction if necessary, decompresses the neural foramen indirectly and undertakes instantaneous rigid fixation of adjacent vertebral bodies. Using the same incision point and trajectory through the presacral space as AxiaLIF, it is possible to realized a similar procedure L4-S1 vertebral fusions called AxiaLIF 2L.

Between february 2009 and may 2010 25 patients (16F:9M) affected by degenerative disc disease (17) and grade 1 or 2 spondylolisthesis (8) were included in this study. Evaluated outcomes were the amount of bleeding, the presence of presacral hematoma, the functional recovery time, the surgery time rate, the x-ray time rate, the complication rate (infection, pelvic visceral injury, postoperative pain).

21 of 25 patients underwent AxiaLIF L5-S1 procedures, 4 of these with a stand alone implant and 17 followed by posterior instrumentation. In the remaining 4 patients, a AxiaLIF 2L L4-S1 procedures is performed. 4 of 25 patients had a perioperative suction drenage. Mean operative time for L5-S1 AxiaLIF procedure was 49 minutes. A 2nd p.o.d. CT pelvic scan of undrained and drained groups showed a mean presacral hematoma of 45 cc and 17 cc respectively reduced one month later to a mean value of 19 cc and 3 cc. Hemoglobin rate mainly reduced of 1,7 g/dL between pre and postoperative time. At one month all patients improved their quality of life significantly but one had a gluteal pain. No patient had perioperative infections or pelvic visceral injuries or required blood transfusions. This study seems to assess that AxiaLIF procedure is a minimally invasive lower spine techique actually. The presacral hematoma presence seems to have no side effect and it may be prevented by perioperative drainage. More large studies are needed to confirm our results.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 99 - 99
23 Feb 2023
Woodfield T Shum J Linkhorn W Gadomski B Puttlitz C McGilvray K Seim H Nelson B Easley J Hooper G
Full Access

Polyetheretherketone (PEEK) interbody fusion cages combined with autologous bone graft is the current clinical gold standard treatment for spinal fusion, however, bone graft harvest increases surgical time, risk of infection and chronic pain. We describe novel low-stiffness 3D Printed titanium interbody cages without autologous bone graft and assessed their biological performance in a pre-clinical in vivo interbody fusion model in comparison to the gold standard, PEEK with graft. Titanium interbody spacers were 3D Printed with a microporous (Ti1: <1000μm) and macroporous (Ti2: >1000μm) design. Both Ti1 and Ti2 had an identical elastic modulus (stiffness), and were similar to the elastic modulus of PEEK. Interbody fusion was performed on L2-L3 and L4-L5 vertebral levels in 24 skeletally mature sheep using Ti1 or Ti2 spacers, or a PEEK spacer filled with iliac crest autograft, and assessed at 8 and 16 weeks. We quantitatively assessed bone fusion, bone area, mineral apposition rate and bone formation rate. Functional spinal units were biomechanically tested to analyse range of motion, neutral zone, and stiffness. Results: Bone formation in macroporous Ti2 was significantly greater than microporous Ti1 treatments (p=.006). Fusion scores for Ti2 and PEEK demonstrated greater rates of bone formation from 8 to 16 weeks, with bridging rates of 100% for Ti2 at 16 weeks compared to just 88% for PEEK and 50% for Ti1. Biomechanical outcomes significantly improved at 16 versus 8 weeks, with no significant differences between Ti and PEEK with graft. This study demonstrated that macroporous 3D Printed Ti spacers are able to achieve fixation and arthrodesis with complete bone fusion by 16 weeks without the need for bone graft. These significant data indicate that low-modulus 3D Printed titanium interbody cages have similar performance to autograft-filled PEEK, and could be reliably used in spinal fusion avoiding the complications of bone graft harvesting


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 8 - 8
7 Nov 2023
Crawford H Baroncini A Field A Segar A
Full Access

7% of adolescent idiopathic scoliosis (AIS) patients also present with a pars defect. To date, there are no available data on the results of fusion ending proximal to a spondylolysis in the setting of AIS. The aim of this study was to analyze the outcomes of posterior spinal fusion (PSF) in this patient cohort, to investigate if maintaining the lytic segment unfused represents a safe option. Retrospective review of all patients who received PSF for AIS, presented with a spondylolysis or spondylolisthesis and had a min. 2-years follow-up. Demographic data, instrumented levels and preoperative radiographic data were collected. Mechanical complications, coronal or sagittal parameters, amount of slippage and pain levels were evaluated. Data from 22 patients were available (age 14.4 ± 2.5 years), 18 Lenke 1–2 and four Lenke 3–6. Five patients (24%) had an isthmic spondylolisthesis, all Meyerding I. The mean preoperative Cobb angle of the instrumented curves was 58 ± 13°. For 18 patients the lowest instrumented vertebra (LIV) was the last touched vertebra (LTV); for two LIV was distal to the LTV; for two, LIV was one level proximal to the LTV. The number of segments between the LIV and the lytic vertebra ranged from 1 to 6. At the last follow-up, no complications were observed. The residual curve below the instrumentation measured 8.5 ± 6.4°, the lordosis below the instrumented levels was 51.4 ± 13°. The magnitude of the isthmic spondylolisthesis remained constant for all included patients. Three patients reported minimal occasional low back pain. The LTV can be safely used as LIV when performing PSF for the management of AIS in patients with L5 spondylolysis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 104 - 104
23 Feb 2023
Gupta V Zhou Y Manson J Watt J
Full Access

Surgical site infections (SSIs) after spinal fusion surgery increase healthcare costs, morbidity and mortality. Routine measures of obesity fail to consider site specific fat distribution. We aimed to assess the association between the spine adipose index and deep surgical site infection and determine a threshold value for spine adipose index that can assist in preoperative risk stratification in patients undergoing posterior instrumented lumbar fusion (PILF). A multicentre retrospective case-control study was completed. We reviewed patients who underwent PILF from January 1, 2010 to December 31, 2018. All patients developing a deep primary incisional or organ-space SSI within 90 days of surgery as per US Centre for Disease Control and Prevention criteria were identified. We gathered potential pre-operative and intra-operative deep infection risk factors for each patient. Spine adipose index was measured on pre-operative mid-sagittal cuts of T2 weighted MRI scans. Each measurement was repeated twice by three authors in a blinded fashion, with each series of measurement separated by a period of at least six weeks. Forty-two patients were included in final analysis, with twenty-one cases and twenty-one matched controls. The spine adipose index was significantly greater in patients developing deep SSI (p =0.029), and this relationship was maintained after adjusting for confounders (p=0.046). Risk of developing deep SSI following PILF surgery was increased 2.0-fold when the spine adipose index was ≥0.51. The spine adipose index had excellent (ICC >0.9; p <0.001) inter- and intra-observer reliabilities. The spine adipose index is a novel radiographic measure and an independent risk factor for developing deep SSI, with 0.51 being the ideal threshold value for pre-operative risk stratification in patients undergoing PILF surgery


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 41 - 41
1 Dec 2022
Koucheki R Howard AW McVey M Levin D McDonnell C Lebel D
Full Access

This study aimed to identify factors associated with increased rates of blood transfusion in patients with adolescent idiopathic scoliosis (AIS) treated with posterior spinal fusion (PSF). A retrospective case-control study was performed for AIS patients treated at a large children's hospital between August 2018 and December 2020. All patients with a diagnosis of AIS were evaluated. Data on patient demographics, AIS, and transfusion parameters were collected. Univariate regression and multivariate logistic modeling were utilized to assess risk factors associated with requiring transfusion. Odds ratios (OR) and 95% confidence interval (CI) were calculated. Surgeries were done by three surgeons and thirty anesthesiologists. To quantify the influence of anesthesia practice preferences a categorical variable was defined as “higher-transfusion practice preference”, for the provider with the highest rate of transfusion. A total of 157 AIS patients were included, of whom 56 were transfused RBC units (cases), and 101 did not receive any RBC transfusion (controls). On univariate analysis, the following variables were significantly correlated with receiving RBC transfusion: “higher-transfusion practice preference,” “administration of crystalloids,” “receiving fresh frozen plasma (FFP),” “receiving platelets,” “pre-operative hemoglobin,” “cell saver volume,” and “surgical time.” On multiple regression modeling, “pre-operative hemoglobin less than 120 g/L” (OR 14.05, 95% CI: 1.951 to 135.7) and “higher-transfusion practice preference” (OR 11.84, 95% CI: 2.505 to 63.65) were found to be meaningfully and significantly predictive of RBC transfusion. In this cohort, we identified pre-operative hemoglobin of 120 g/L as a critical threshold for requiring transfusion. In addition, we identified significant contribution from anesthesia transfusion practice preferences. Our multivariate model indicated that these two factors are the major significant contributors to allogenic blood transfusion. Although further studies are required to better understand factors contributing to transfusion in AIS patients, we suggest standardized, peri-operative evidence-based strategies to potentially help reduce variations due to individual provider preferences


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 64 - 64
1 Jul 2020
Wang X Aubin C Rawlinson J Armstrong R
Full Access

In posterior fixation for deformity correction and spinal fusion, there is increasing discussion around auxiliary rods secured to the pedicle screws, sharing the loads, and reducing stresses in the primary rods. Dual-rod, multiaxial screws (DRMAS) provide two rod mounting points on a single screw shaft to allow unique constructs and load-sharing at specific vertebrae. These implants provide surgical flexibility to add auxiliary rods across a pedicle subtraction osteotomy (PSO) or over multiple vertebral levels where higher bending loads are anticipated in primary rods. Other options include fixed-angle devices as multiple rod connectors (MRC) and variable-angle dominoes (VAD) with a single-axis rotation in the connection. The objective in this simulation study was to assess rod bending in adult spinal instrumentation across an osteotomy using constructs with DRMAS, MRC, or VAD multi-rod connections. The study was performed using computer biomechanical models of two adult patients having undergone posterior instrumented spinal fusion for deformity. The models were patient-specific, incorporating the biomechanics of the spine, have been calibrated to assess deformity correction and intra- and postoperative loads across the instrumented spine. One traditional bilateral-rod construct was used as a control for six multi-rod configurations. Spinal fixation scenarios from T10 through S1 with the PSO at L4 were simulated on each patient-specific model. The multi-rod configurations were bilateral and unilateral DRMAS at L2 through S1 (B-DRMAS and U-DRMAS), bilateral DRMAS at L3 and L5 (Hybrid), bilateral MRC over L3-L5, bilateral and unilateral VAD over L3-L5 (B-VAD and U-VAD). Postoperative gravity plus 8-Nm flexion and extension loads were simulated and bending moments in the rods were computed and compared. In the simulated control for each case (#1 & #2), average rod bending moments (of the right and left rods) at the PSO level were 6.7Nm & 5.5Nm, respectively, in upright position, 8.8Nm & 7.3Nm in 8-Nm flexion, and 4.6Nm & 3.7Nm in 8-Nm extension. When the primary rods of the multi-rod constructs were normalized to this control, the bending moments in the primary rods of Case #1 & #2 were respectively 57% & 58% (B-DRMAS), 54% & 62% (B-VAD), 60% & 61% (MRC), 72% & 69% (Hybrid), 81% & 70% (U-DRMAS), and 81% & 73% (U-VAD). Overall, the reduction in primary rod bending moments ranged from 19–46% for standing loads. Under simulated 8-Nm functional moments, the primary rod moments were reduced by 18–46% in flexion and 17–48% in extension. More rods and stiffer connections produced the largest reductions for the primary rods, but auxiliary rods had bending moments that varied from 49% lower to 13% higher than the primary ones. Additional rods through DRMAS, MRC, and VAD connections noticeably reduced the bending loads in the primary rods compared with a standard bilateral-rod construct. Yet, bending loads in the auxiliary rods were higher or lower than those in the primary rods depending on the 3D spinal deformity and stiffness of the auxiliary rod connections. Additional studies and patient-specific analyses are needed to optimize instrumentation parameters that may improve load-sharing in these constructs


INTRODUCTION. The elimination of motion and disc stress produced by spinal fusion may have potential consequences beyond the index level overloading the spinal motion segments and leading to the appearance of degenerative changes. So the “topping-off” technique is a new concept instructing dynamic fixation such as interspinous process device (IPD) for the purpose of avoiding adjacent segment disease (ASD) proximal to the fusion construct. MATERIALS AND METHODS. The study simulated spinal fusion in L4-L5, fusion combined DIAM in L3-L4. The ROM and maximum von Miss stresses were analyzed in flexion, extension, lateral bending, and torsion in response to hybrid method, compared to intact modeland fusion model. RESULTS. The investigation revealed that decreased ROM, intradiscal stress in implanted level but a considerable increase in stresses at more upper level (L2-L3) during flexion and extension in hybrid model, comparing with the fusion model. CONCLUSIONS. The raise of intradiscal pressure at the adjacent segment to a rigid fusion segment can be reduced when the rigid construct is augmented with an interspinous process device. However, the burden of stress over total spinal segments was still the same, the stress and ROM were just shift to supraadjacent levels