Aim. The aim of this study is to evaluate if the gentamycin elution from bone cement is influenced by the timing of application of the antibiotic powder. Method. This was an experimental in vitro study that compared the elution properties of different formulation of gentamycin from a commercially available hip, knee and shoulder cement spacers. Four different experimental models were prepared. Five different spacers were prepared for each experimental mode and for each joint. We compared four different formulation of cement spacers: spacer #1, in which the spacer was prepared with a premixed bone-cement antibiotic mixture; spacer #2, in which the spacer was prepared by adding antibiotic powder to the bone cement at the time of spacer preparation; spacer #3, in which the spacer was prepared as spacer #2 but was stored for two months before starting the experiment; spacer #4, in addition to the gentamycin, other two antibiotics (tobramycin and vancomycin) were added to the bone cement. Gentamycin concentration was documented at seven intervals of time: T0 = 0h, T1 = 1h, T2 = 24h, T3 = 1W, T4 = 2W, T5 = 1M, T6 = 3M and T7 = 6M. The gentamycin elution at each interval of time was evaluated by using a T-student test. Results.
Aim. Due to medical and organizational factors, it occurs in everyday practice that spacers are left in place longer than originally planned during a two-stage prosthesis exchange in the case of prosthetic joint infections. Patients are severely restricted in their mobility and, after initial antibiotic administration, the spacer itself only acts as a foreign body. The aim of this study is to analyze whether the duration of the spacer in situ has an influence on the long-term success of treatment and mortality. Method. We retrospectively studied all 204 two-stage prosthesis replacements of the hip and knee from 2012 to 2016 with a minimum follow-up of two years at an arthroplasty center with 3 main surgeons. The duration of the spacer interval was divided into two groups. Patients replanted within ten weeks (as is standard in multiple algorithms) after systemic antibiotic treatment were assigned to the ‘Regular
Studies have shown that retention of antibiotic cement spacer in selected elderly patients with low functional demand represents a viable option for periprosthetic joint infections (PJI) treatment1,2. The aim of this study is to compare the efficacy in infection treating among modular taylored preformed and hand-made antibiotic spacers. Our hypothesis is that modular tailored preformed spacer provides a better rate of infection resolution, better radiological and functional outcomes compared to hand-made spacers. We identified 48 patients treated with antibiotic cement spacer for shoulder chronic infection between 2015 and 2021 in our institution; (13 hand-made spacers and 35 modular tailored preformed spacers). We collected data about comorbidities, associated microorganism, infection resolution, clinical and radiographic evaluation.Aim
Materials and methods
Successful treatment of the infected arthroplasty remains a major concern to the revision surgeon. We aim to present our audit of the use of the Biomet Femoral
Introduction. Temporary use of antibiotic-impregnated polymethylmethacrylate (PMMA) bone cement spacers in two-stage revisions is considered to be standard of care for patients with a chronic infection of a joint replacement. Spacers should be wear resistant and load-bearing to avoid prolonged immobilisation of the patient and to reduce morbidity. Most cement spacers contain barium sulphate or zirconium dioxide as radio-opaque substrate. Both are quite hard materials that may negatively influence the wear behaviour of the spacer. Calcium carbonate is another radio-opaque substrate with lower hardness potentially increasing the wear resistance of the spacer materials. The purpose of the study was to compare a prototype PMMA knee spacer (calcium carbonate loaded) with a commercially available spacer (containing barium sulphate) regarding the wear performance and particle release in a knee wear simulator. Material and Methods.
The Dynesys is a flexible posterior stabilization system that is designed to preserve intersegmental kinematics and reduce loading at the facet joints. The purpose of this study was to determine if the length of the Dynesys spacer has an effect on range of motion (ROM) at the implanted level.
Background: A knee functional spacer made of antibiotic-loaded acrylic cement was used for treatment of infected TKA with two-stage exchange arthroplasty procedure. Materials and Methods:
A knee functional spacer made of antibiotic-loaded acrylic cement was used for treatment of infected TKA with two-stage exchange arthroplasty procedure. The
The use of antibiotic-spacer, it is essential to treat infections in orthopedics. They play a dual role, to fight the infection directly on the outbreak and keep the length or the articulation of the limbs thus facilitating the second operation. To date it is not known, the superiority of use of 3 antibiotics compared to two. Authors try to compare industrial preformed spacers with two antibiotics with custom made spacers with three antibiotics to assess (a) the control of infection, (b) complications, (c) quality of life, (d) pain and (e) patient satisfaction. 137 patients treated at the Institute Codivilla-Putti from January 2010 to December 2012 were considered: 68 patients treated with antibiotic preformed spacer (clindamycin + gentamicin) or (Erythromycin + Colistin), 69 patients treated with antibiotic spacer added with 3 antibiotics (clindamycin + gentamicin + vancomycin) or (Erythromycin Vancomycin + Colistin). Demographic data were collected:
type and site of infection (classified by Cerny-Mader) microbiological results previous surgeries years of illness. Primary outcome of infection control or relapse after at least 12 months of follow-up were assessed. Complications were recorded. Each patient completed a test on the quality of life and a satisfaction scale self-referenced. After a mean follow-up of 33.82 months (SD 14:50), at the end of the treatment, at last follow up 15/133 were infected. 4 died from other causes not correlated with infection, whit a 11.3% rate of reinfection. Up to our knowledge, there is only one study using the procedure in two steps comparing the use of spacers loaded with 2 or 3 antibiotics. Our results show that a revision protocol in two steps with 3 antibiotic loaded spacers have a high success rate in the treatment of chronic osteomyelitis. We can observe that patients treated with custom-made cements are 4 percentage points lower than those treated with preformed cements, but there are no statistically significant differences in the rate of recurrence of infection. Our results suggest that a two stages procedure with three antibiotic loaded spacers should be considered in selected patients to avoid rescue procedures, such as amputation and arthrodesis. We think is important to do more randomized trials, controlled, prospective study with a larger group to detect statistically significant differences.
Preclinical data showed poly(methyl methacrylate) (PMMA) loaded with microsilver to be effective against a variety of bacteria. The purpose of this study was to assess patient safety of PMMA spacers with microsilver in prosthetic hip infections in a prospective cohort study. A total of 12 patients with prosthetic hip infections were included for a three-stage revision procedure. All patients received either a gentamicin-PMMA spacer (80 g to 160 g PMMA depending on hip joint dimension) with additional loading of 1% (w/w) of microsilver (0.8 g to 1.6 g per spacer) at surgery 1 followed by a gentamicin-PMMA spacer without microsilver at surgery 2 or vice versa. Implantation of the revision prosthesis was carried out at surgery 3.Objectives
Methods
To improve the challenging treatment of periprosthetic joint infections (PJI), researchers are constantly developing new handling methods and strategies. In patients with PJI after total knee arthroplasty (TKA) and severe local or systemic comorbidities, a two-stage exchange using a temporary antibiotic loaded PMMA-spacer is considered gold standard. This method has undisputed advantages, however, the increased risk of biofilm formation on the spacer surface, bone defects and soft tissue contractions after a six-week spacer interval are severe limitations. Our hypothesis is that a vacuum sealed foam in combination with constant instillation of an antiseptic fluid can address these drawbacks due to a significantly reduced spacer interval. A pilot study was conducted in five PJI cases after TKA with severe comorbidities and/or multiple previous operations to evaluate the feasibility and safety of the proposed method. In the first step, surgical treatment included the explantation of the prosthesis, debridement, and the implantation of the VeraFlo-Dressing foam. The foam is connected to the VAC-Instill-Device via an inflow and an outflow tube. The surgical site is sealed airtight with the VAC-film. During the next 5 days, an antiseptic fluid (Lavasorb® or Taurolidine®) is instilled in a 30-minute interval using the VAC-Instill-Device. The limb is immobilized (no flexion in the knee joint, no weight bearing) for five days. Following that, the second operation is performed in which the VAC-VeraFloTM-Therapy System is explanted and the revision TKA is implanted after debridement of the joint.Aim
Method
The primary endpoint of this study is to characterize the progression of bone defects at the femoral and tibial side in patients who sustained PJI of the knee that underwent two-stage revision with spacer implantation. In addition, we want to analyze the differences between functional moulded and hand-made spacers. A retrospective analysis of patients that underwent two-stage revision due to PJI of the knee between January 2014 and December 2021 at our institution. Diagnosis of infection was based on the criteria of the Muscoloskeletal Infection Society. The bone defect evaluation was performed intraoperatively based on the Aim
Methods
The preparation of antibiotic-containing polymethyl methacrylate (PMMA), as spacers generates a high polymerization heat, which may affect their antibiotic activity; it is desirable to use bone cement with a low polymerization heat. Calcium phosphate cement (CPC) does not generate heat on polymerization, and comparative elution testings are reported that vancomycin (VCM)-containing CPC (VCM-CPC) exceeded the antibiotic elution volume and period of PMMA (VCM-PMMA). Although CPC alone is a weak of mechanical property spacer, the double-layered, PMMA-covered CPC spacer has been created and clinically used in our hospital. In this study, we prepared the double-layered spacers: CPC covered with PMMA and we evaluated its elution concentration, antimicrobial activity and antibacterial capability. We prepared spherical, double-layered, PMMA-coated (CPC+PMMA; 24 g CPC coated with 16 g PMMA and 2 g VCM) and PMMA alone (40 g PMMA with 2 g VCM) spacers (5 each). In order to facilitate VCM elution from the central CPC, we drilled multiple holes into the CPC from the spacer surface. Each spacer was immersed in phosphate buffer (1.5 mL/g of the spacer), and the solvent was changed daily. VCM concentrations were measured on days 1, 3, 7, 14, 28, 56, and 84. Antimicrobial activity against MRSA and MSSA was evaluated by the broth microdilution method. After measuring all the concentration, the spacers were compressed at 5 mm/min and the maximum compressive load up to destruction was measured.Aim
Method
We propose a state-of-the-art temporary spacer, consisting of a cobalt-chrome (CoCr) femoral component and a gentamicin-eluting ultra-high molecular weight polyethylene (UHMWPE) tibial insert, which can provide therapeutic delivery of gentamicin, while retaining excellent mechanical properties. The proposed implant is designed to replace conventional spacers made from bone cement. Gentamicin-loaded UHMWPE was prepared using phase-separated compression moulding, and its drug elution kinetics, antibacterial, mechanical, and wear properties were compared with those of conventional gentamicin-loaded bone cement.Aims
Methods
Infection remains as one of the major challenges of total joint surgery. One-stage irrigation, debridement and reimplantation or two-stage revision surgery with a temporary implantation of antibiotic eluting bone cement spacer followed by reimplantation are two methods often used to treat infected patients with mixed outcomes. Like bone cement, ultra-high molecular weight polyethylene (UHMWPE) can also be used as a carrier for antibiotics. Recently, we demonstrated that vancomycin and rifampin can be successfully delivered from UHMWPE implants at therapeutic levels to eradicate Staphylococcus aureus biofilm in a lupine animal model. There are regulatory challenges in translating these types of combination devices in to clinical use. One approach is to follow a stepwise strategy, with the first step of seeking clearance for a temporary UHMWPE spacer containing gentamicin sulfate. In this study, we explored the effect of gentamicin sulfate (GS) content in UHMWPE on GS elution rate and antimicrobial activity against methicillin-sensitive S. aureus(MSSA). We also assessed the effect of spacer fabrication on the activity of gentamicin sulfate. We prepared and consolidated UHMWPE/GS blends in varying concentrations. After consolidation, we fabricated test samples with surface area (350mm2) to volume (300mm3) ratio of 1.2 for elution in 1.5ml phosphate buffered saline at body temperature for up to six months and quantified eluted GS content using liquid chromatography – mass spectrometry (LCMS). We assessed the antibacterial activity of the obtained samples in vitro against various concentrations of MSSA (103–106 CFU/ml). Furthermore, we quantified the probability of bacterial colonization of UHMWPE impregnated with GS compared to GS containing bone cement. We assessed any detectable changes in activity of eluted GS caused by spacer fabrication by screening m/z peaks of GS isomers in mass spectra obtained from LC-MS. Gentamicin sulfate activity was not compromised by the elevated temperature and pressure used during spacer fabrication. Elution rate of GS increased with increasing GS content in the blends studied. At comparable elution rates, the GS-loaded UHMWPE was either equivalent or better in terms of antibacterial and anticolonization properties when compared with gentamicin containing bone cement. GS-impregnated UHMWPE is a promising material for temporary spacers.
Infection remains as one of the major challenges of total joint surgery. One-stage irrigation, debridement and reimplantation, or two-stage revision surgery with a temporary implantation of antibiotic eluting bone cement spacer followed by reimplantation are two methods often used to treat infected patients with mixed outcomes. Like bone cement, ultra-high molecular weight polyethylene (UHMWPE) can also be used as a carrier for antibiotics. Recently, we demonstrated that vancomycin and rifampin can be delivered from UHMWPE implants at therapeutic levels to eradicate We characterized the gentamicin sulfate (GS) particles with scanning electron microscopy (SEM). We molded UHMWPE/GS powder blends and characterized the morphology using SEM and Energy Dispersive X-Ray Spectroscopy (EDS). We submerged samples of molded UHMWPE/GS in buffered phosphate solution (PBS) at 37°C and quantified the extent of GS elution into PBS with a method described by Gubernator et al. using o-phthaladehyde (OPA) [1]. Under basic conditions, OPA reacts with primary amino groups to form fluorescent complexes. Since gentamicin is the only source of such amino acids in our elution samples, the number of fluorescent complexes formed is directly proportional to the amount of gentamicin in the sample. Using this method, we could quantify gentamicin elution by measuring sample fluorescence post OPA-reaction. We used a plate reader to excite the fluorescent complexes formed in the OPA reaction and measured the resulting emission at wavelengths of 340 nm and 455 nm, respectively. We also quantified the effect of the standard cleaning protocol (heated sonication in alkaline water and alcohol) used to clean UHMWPE implants on subsequent GS elution from UHMWPE/GS samples using the OPA method. We used agar diffusion tests to characterize antibacterial properties of UHMWPE/GS samples after cleaning. For these tests, we collected eluents collected from UHMWPE/GS and gentamicin-impregnated bone cement (BC/GS) following 1, 2, 3, and 4 weeks of elution, and tested against Introduction
Methods
The effectiveness of mandatory joint aspiration prior to re-implantation in patients with a cement spacer already in place is unclear. The aim of this study was to evaluate the role of culturing articular fluid obtained by joint aspiration prior to re-implantation in patients who underwent a two stage septic revision. A retrospective observational study was conducted, assessing51 patients that underwent a two stage septic hip or knee revision from 2010 to 2017. According to the results of intraoperative cultures, after the first stage revision each patient was treated with an antibiotic protocol for 6–8 weeks. Following two weeks without antibiotics, a culture of synovial fluid was obtained. Synovial fluid was obtained by direct joint aspiration in cases of knee spacers by and by joint aspiration guided by fluoroscopy in the theatre room in cases of hip spacers. Synovial fluid was transferred into a Vacutainer ACD® flask. Samples were processed and analysed in the microbiology laboratory. Gram stains were performed and the sample was subsequently transferred into a BacALERT bottle (bioMérieux, France) and incubated in a BacALERT instrument for seven days. Results of these cultures were recorded and compared with cultures obtained during re-implantation surgery.Aim
Method
Septic arthritis of the hip is a rare entity among the adult population, but with a potential severe repercussion. The most accepted treatment is the hip debridement, even though a notorious proportion of the cases need further hip replacement owing to the cartilage destruction. The aim of this study is to analyse all our cases of septic arthritis of the hip treated with a 2-stage strategy using an antibiotic-loaded cement spacer. We present a retrospective review of all our cases of septic arthritis of the hip diagnosed between 2004 and 2016 that were treated with an antibiotic-loaded cement spacer. We analysed age, gender, comorbidities, aetiology, duration of symptoms, C-reactive protein values, erythrocyte sedimentation rate, initial treatment, cultures, definitive treatment and evolution.Aim
Method
Several risk factors can and should be addressed during first stage or spacer implantation surgery in order to minimize complications. Technical aspects as well as practical tips and pearls to overcome common nuisances such as spacer instability or femoral and acetabular bone loss will be discussed and shown with pictures. Total joint arthroplasty (TJA) is one of the most successful procedures in orthopaedics and excellent results are expected in virtually all cases. Periprosthetic joint infection (PJI) though unusual, is one of the most frequent and challenging complications after TJA. It is the third most common cause of revision in total hip replacement, responsible for up to 15% of all cases. In the past few years several improvements have been made in the management of an infected total hip prosthesis. Nevertheless it remains a challenging problem for the orthopaedic surgeon. Although numerous studies report favourable outcomes after one-stage revision surgery, two-stage has traditionally been considered as the gold standard for management of chronic infection. Two-stage exchange consists of debridement, resection of infected implants and usually temporary placement of an antibiotic-impregnated cement spacer before reimplantation of a new prosthesis. Spacers can be classified as static or articulating. The goals of using an articulating antibiotic loaded cement spacer are two-fold: to enhance the clearance of infection by local antibiotic therapy and dead-space management while maintaining joint function during treatment thus improving the functional outcome at reimplantation. Still, hip spacer implantation is not innocuous and there are several possible complications. Going forward, one must consider not just eradicating infection but also the importance of restoring function. In this regard using a mobile spacer adds an element of physiologic motion that both increases patient comfort between stages and facilitates re-implantation surgery. Conversely, mechanical complications are one of the major consequences of this preference. Be that as it may there are ways to minimize these problems. It is the surgeon responsibility to optimize mechanical circumstances as much as possible. I would like to thank Dr. Ricardo Sousa for his help with this work