Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 44 - 44
1 Jun 2023
Fossett E Ibrahim A Tan JK Afsharpad A
Full Access

Introduction. Snapping hip syndrome is a common condition affecting 10% of the population. It is due to the advance of the iliotibial band (ITB) over the greater trochanter during lower limb movements and often associated with hip overuse, such as in athletic activities. Management is commonly conservative with physiotherapy or can be surgical to release the ITB. Here we carry out a systematic review into published surgical management and present a case report on an overlooked cause of paediatric snapping hip syndrome. Materials & Methods. A systematic review looking at published surgical management of snapping hip was performed according to PRISMA guidelines. PubMed, MEDLINE, EMBASE, CINAHL and the Cochrane Library databases were searched for “((Snapping hip OR Iliotibial band syndrome OR ITB syndrome) AND (Management OR treatment))”. Adult and paediatric published studies were included as few results were found on paediatric snapping hip alone. Results. 1548 studies were screened by 2 independent reviewers. 8 studies were included with a total of 134 cases, with an age range of 14–71 years. Surgical management ranged from arthroscopic, open or ultrasound guided release of the ITB, as well as gluteal muscle releases. Common outcome measures showed statistically significant improvement pre- and post-operatively in visual analogue pain score (VAPS) and the Harris Hip Score (HHS). VAPS improved from an average of 6.77 to 0.3 (t-test p value <0.0001) and the HHS improved from an average of 62.6 to 89.4 (t-test p value <0.0001). Conclusions. Although good surgical outcomes have been reported, no study has reported on the effect of rotational profile of the lower limbs and snapping hip syndrome. We present the case of a 13-year-old female with snapping hip syndrome and trochanteric pain. Ultrasound confirmed external snapping hip with normal soft tissue morphology and radiographs confirmed no structural abnormalities. Following extensive physiotherapy and little improvement, she presented again aged 17 with concurrent anterior knee pain, patella mal-tracking and an asymmetrical out-toeing gait. CT rotational profile showed 2° of femoral neck retroversion and excessive external tibial torsion of 52°. Consequently, during her gait cycle, in order to correct her increased foot progression angle, the hip has to internally rotate approximately 35–40°, putting the greater trochanter in an anterolateral position in stance phase. This causes the ITB to snap over her abnormally positioned greater trochanter. Therefore, to correct rotational limb alignment, a proximal tibial de-rotation osteotomy was performed with 25° internal rotation correction. Post-operatively the patient recovered well, HHS score improved from 52.5 to 93.75 and her snapping hip has resolved. This study highlights the importance of relevant assessment and investigation of lower limb rotational profile when exploring causes of external snapping hip, especially where ultrasound and radiographs show no significant pathology


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 40 - 40
1 May 2013
MacDonald S
Full Access

Pain following total hip arthroplasty is a relatively rare event. Several series place the incidence of some degree of pain post THA at approximately 5%. A systematic approach to determining etiology will direct treatment. Hip pain can be categorised as:. Extrinsic to the Hip. –. Spine +/− radiculopathy. –. Vascular disease. –. Metabolic (Paget's). –. Malignancy. Intrinsic to the Hip. Intracapsular/Implant. Loosening. Sepsis. Prosthetic failure. Osteolysis. Instability. Thigh pain. Stem tip pain. Hypersensitivity/ALVAL. Extracapsular. Iliopsoas tendonitis. Snapping Hip. Trochanter problems (bursitis). Heterotopic ossification. A full history and appropriate physical exam will direct the clinician. The use of routine radiographs, blood tests, and special tests (i.e., blood metal ions, advanced imaging techniques) will be discussed I detail