Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 78 - 78
1 Jul 2020
Atkins G Yang D Wijenayaka A Kidd S Solomon L Gunn N Findlay D
Full Access

Periprosthetic joint infection (PJI) is a potentially devastating complication of joint replacement surgery. Osteocytes comprise 90–95% of all cells in hard bone tissue, are long-lived and are becoming increasingly recognised as a critical cell type in the regulation of bone and systemic physiology. The purpose of this study was to examine role of these cells in PJI pathophysiology and aetiology, with the rationale that their involvement could contribute to the difficulty in detecting and clearing PJI. This study examined the ability of human osteocytes to become infected by Staphylococcus aureus and the responses of both the host cell and pathogen in this scenario. Several S. aureus (MRSA) strains were tested for their ability to infect human primary osteocyte-like cells in vitro and human bone samples ex vivo. Bone biopsies were retrieved from patients undergoing revision total hip arthroplasty for either aseptic loosening associated with osteolysis, or for PJI. Retrieved bacterial colony number from cell lysates and colony morphology were determined. Gene expression was measured by microarray/bioinformatics analysis and/or real-time RT-PCR. Exposure to planktonic S. aureus (approx. 100 CFU/cell) resulted in intracellular infection of human osteocyte-like cells. We found no evidence of increased rates of osteocyte cell death in bacteria exposed cultures. Microarray analysis of osteocyte gene expression 24h following exposure revealed more than 1,500 differentially expressed genes (fold-change more than 2, false discovery rate p < 0.01). The gene expression patterns were consistent with a strong innate immune response and altered functionality of the osteocytes. Consistent patterns of host gene expression were observed between experimentally infected osteocyte-like cultures and human bone, and in PJI patient bone samples. Internalised bacteria switched to the quasi-dormant small colony variant (SCV) form over a period of 5d, and the ensuing infection appeared to reach a stable state. S. aureus infection of viable osteocytes was also identified in bone taken from PJI patients. We have demonstrated [1] that human osteocytes can become infected by S. aureus and respond robustly by producing immune mediators. The bony location of the infected osteocyte may render them refractory to clearance by immune cells, and osteocytes may therefore be an immune-privileged cell type. The phenotypic switch of S. aureus to SCV, a form less sensitive to most antibiotics and one associated with intracellular survival, suggests that infection of osteocytes may contribute to a chronic disease state. The osteocyte may therefore serve as a reservoir of bacteria for reinfection, perhaps explaining the high prevalence of infections that only become apparent after long periods of time or recur following surgical/medical treatment. Our findings also provide a biological rationale for the recognised need for aggressive bone debridement in the surgical management of PJI


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 68 - 68
1 Dec 2018
Abad L Diot A Josse J Tasse J Lustig S Ferry T Laurent F Valour F
Full Access

Aim. Leading etiology of Bone and Join infections (BJI), Staphylococcus aureus (SA) is responsible for difficult-to-treat infections mainly because of three persistence factors: (i) biofilm formation, (ii) persistence within bone cells and (iii) switch to the small colony variant (SCV) phenotype. The impact of rifampin on these mechanisms gave it a prominent place in orthopedic device-associated BJI. However, resistance emergence, intolerance and drug interactions cause significant concerns. In this context, other rifamycins – namely rifapentine and rifabutin – have poorly been evaluated, particularly toward their ability to eradicate biofilm-embedded and intracellular reservoirs of SA. Method. This study aimed at comparing the intracellular activities of and SCV induction by rifampin, rifabutin and rifapentine in an in vitro model of osteoblast infection. Four concentrations were tested (0.1xMIC, MIC, 10xMIC, 100xMIC) against three SA strains (6850 and two clinical isolates involved in recurrent BJI). Results. Each rifamycin had a similar intracellular activity, decreasing by 50% the intracellular inoculum from a concentration equal to MIC. Rifabutin was more efficient at low concentrations, with a reduction of 19.9% at 0.1MIC. At all concentrations, a 1.5-fold increase in cellular viability was observed for all molecules. A dose-dependent induction of intracellular SCVs was observed, which was significantly lower for rifabutin than rifampicin at 10MIC (p<0.0001). Conclusions. Each rifamycin was efficient to eradicate intraosteoblastic SA reservoir, one bacterial phenotype in recurrent's BJI. Rifabutin was more efficient at low concentration, suggesting an important intracellular accumulation. This can be explained by its oil/water coefficient of partition 100 time superior than other rifamycins. Using rifabutin at lower concentration, limiting adverses effect and the emergence of SCVs, could be an interesting therapeutic alternative in BJI's treatment. The comparison of rifamycin ability to eradicate biofilm-embedded SA, another chronicity and relapse factor, is an ongoing work


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 31 - 36
1 Jan 2016
Whiteside LA Roy ME Nayfeh TA

Bactericidal levels of antibiotics are difficult to achieve in infected total joint arthroplasty when intravenous antibiotics or antibiotic-loaded cement spacers are used, but intra-articular (IA) delivery of antibiotics has been effective in several studies. This paper describes a protocol for IA delivery of antibiotics in infected knee arthroplasty, and summarises the results of a pharmacokinetic study and two clinical follow-up studies of especially difficult groups: methicillin-resistant Staphylococcus aureus and failed two-stage revision. In the pharmacokinetic study, the mean synovial vancomycin peak level was 9242 (3956 to 32 150; sd 7608 μg/mL) among the 11 patients studied. Serum trough level ranged from 4.2 to 25.2 μg/mL (mean, 12.3 μg/mL; average of 9.6% of the joint trough value), which exceeded minimal inhibitory concentration. The success rate exceeded 95% in the two clinical groups. IA delivery of antibiotics is shown to be safe and effective, and is now the first option for treatment of infected total joint arthroplasty in our institution.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):31–6.