Advertisement for orthosearch.org.uk
Results 1 - 20 of 34
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 54 - 54
1 Jun 2012
Lam T Hung VY Yeung H Chu W Ng B Lee K Qin L Cheng J
Full Access

Introduction. The main challenge in management of adolescent idiopathic scoliosis (AIS) is to predict which curve will progress so that appropriate treatment can be given. We previously reported that low bone mineral density (BMD) was one of the adverse prognostic factors for AIS. With advancement in imaging technology, quantitative ultrasound (QUS) becomes a useful method to assess bone density and bone quality. The objective of this study was to assess the role of QUS as a radiation-free method to predict curve progression in AIS. Methods. 294 girls with AIS were recruited at ages 11–16 years and followed up until skeletal maturity. 269 age-matched healthy girls were recruited as controls. They provided the normal reference for calculation of Z score for QUS parameters. QUS measurements, including BUA (broadband ultrasound attenuation), VOS (velocity of sound) and SI (stiffness index) of the calcaneum, BMD of femoral neck, menarche history, ages, and Cobb angle of the major curve were recorded at baseline as independent variables. The predictive outcome was curve progression defined as an increase of Cobb angle of 6° or more. Logistic regression model and the ROC curve were used for statistical analysis. Results. Mean follow-up was 3·4 years (SD 1·57). At baseline, mean age was 13·4 years (1·23), 73 (24·8%) patients were premenarchal, and mean Cobb angle was 26·3° (SD 8·2°). 202 (68·7%), 194 (66%), and 202 (68·7%) of patients with AIS had Z score of BUA, VOS, and SI of 0 or less, respectively. Initial univariate analysis indicated all independent variables had p values less than 0.2. Logistic regression analysis indicated that the p values of their regression coefficients were: age (p<0·001), menarchal status (p<0·001), Cobb angle (p=0·008), BMD (p=0·084), BUA (p=0·722), VOS (p=0·112), and SI (p=0·027). SI, age, menarchal status, and Cobb angle were therefore included in the final prediction equation. The adjusted odds ratio for Z score of SI of 0 or less was 2·00 (95% CI 1·08–3·71). The area under the ROC curve was 0·831(95% CI 0·785–0·877). The predictive model had a sensitivity of 0·847 and a specificity of 0·665 at a probability cutoff of 0·368. Conclusions. We recorded evidence of deranged bone density and bone quality in AIS, as indicated by QUS investigation. SI is an independent and significant prognostic factor for AIS. It can be used as a radiation-free parameter to predict curve progression in combination with initial Cobb angle, age, and menarchal status, especially when DXA is not available. Acknowledgments. This study is supported by Research Grant Council—The government of HKSAR (project number CUHK4498/06M)


Aims. The aim of this study was to investigate whether including the stages of ulnar physeal closure in Sanders stage 7 aids in a more accurate assessment for brace weaning in patients with adolescent idiopathic scoliosis (AIS). Methods. This was a retrospective analysis of patients who were weaned from their brace and reviewed between June 2016 and December 2018. Patients who weaned from their brace at Risser stage ≥ 4, had static standing height and arm span for at least six months, and were ≥ two years post-menarche were included. Skeletal maturity at weaning was assessed using Sanders staging with stage 7 subclassified into 7a, in which all phalangeal physes are fused and only the distal radial physis is open, with narrowing of the medial physeal plate of the distal ulna, and 7b, in which fusion of > 50% of the medial growth plate of distal ulna exists, as well as the distal radius and ulna (DRU) classification, an established skeletal maturity index which assesses skeletal maturation using finer stages of the distal radial and ulnar physes, from open to complete fusion. The grade of maturity at the time of weaning and any progression of the curve were analyzed using Fisher’s exact test, with Cramer’s V, and Goodman and Kruskal’s tau. Results. We studied a total of 179 patients with AIS, of whom 149 (83.2%) were female. Their mean age was 14.8 years (SD 1.1) and the mean Cobb angle was 34.6° (SD 7.7°) at the time of weaning. The mean follow-up was 3.4 years (SD 1.8). At six months after weaning, the rates of progression of the curve for patients weaning at Sanders stage 7a and 7b were 11.4% and 0%, respectively for those with curves of < 40°. Similarly, the rates of progression of the curve for those being weaned at ulnar grade 7 and 8 using the DRU classification were 13.5% and 0%, respectively. The use of Sanders stages 6, 7a, 7b, and 8 for the assessment of maturity at the time of weaning were strongly and significantly associated (Cramer’s V 0.326; p = 0.016) with whether the curve progressed at six months after weaning. Weaning at Sanders stage 7 with subclassification allowed 10.6% reduction of error in predicting the progression of the curve. Conclusion. The use of Sanders stages 7a and 7b allows the accurate assessment of skeletal maturity for guiding brace weaning in patients with AIS. Weaning at Sanders stage 7b, or at ulnar grade 8 with the DRU classification, is more appropriate as the curve did not progress in any patient with a curve of < 40° immediately post-weaning. Thus, reaching full fusion in both distal radial and ulnar physes (as at Sanders stage 8) is not necessary and this allows weaning from a brace to be initiated about nine months earlier. Cite this article: Bone Joint J 2021;103-B(1):141–147


Bone & Joint Open
Vol. 3, Issue 2 | Pages 123 - 129
1 Feb 2022
Bernard J Bishop T Herzog J Haleem S Lupu C Ajayi B Lui DF

Aims. Vertebral body tethering (VBT) is a non-fusion technique to correct scoliosis. It allows correction of scoliosis through growth modulation (GM) by tethering the convex side to allow concave unrestricted growth similar to the hemiepiphysiodesis concept. The other modality is anterior scoliosis correction (ASC) where the tether is able to perform most of the correction immediately where limited growth is expected. Methods. We conducted a retrospective analysis of clinical and radiological data of 20 patients aged between 9 and 17 years old, (with a 19 female: 1 male ratio) between January 2014 to December 2016 with a mean five-year follow-up (4 to 7). Results. There were ten patients in each group with a total of 23 curves operated on. VBT-GM mean age was 12.5 years (9 to 14) with a mean Risser classification of 0.63 (0 to 2) and VBT-ASC was 14.9 years (13 to 17) with a mean Risser classification of 3.66 (3 to 5). Mean preoperative VBT-GM Cobb was 47.4° (40° to 58°) with a Fulcrum unbend of 17.4 (1° to 41°), compared to VBT-ASC 56.5° (40° to 79°) with 30.6 (2° to 69°)unbend. Postoperative VBT-GM was 20.3° and VBT-ASC Cobb angle was 11.2°. The early postoperative correction rate was 54.3% versus 81% whereas Fulcrum Bending Correction Index (FBCI) was 93.1% vs 146.6%. The last Cobb angle on radiograph at mean five years’ follow-up was 19.4° (VBT-GM) and 16.5° (VBT-ASC). Patients with open triradiate cartilage (TRC) had three over-corrections. Overall, 5% of patients required fusion. This one patient alone had a over-correction, a second-stage tether release, and final conversion to fusion. Conclusion. We show a high success rate (95%) in helping children avoid fusion at five years post-surgery. VBT is a safe technique for correction of scoliosis in the skeletally immature patient. This is the first report at five years that shows two methods of VBT can be employed depending on the skeletal maturity of the patient: GM and ASC. Cite this article: Bone Jt Open 2022;3(2):123–129


Bone & Joint Open
Vol. 4, Issue 11 | Pages 873 - 880
17 Nov 2023
Swaby L Perry DC Walker K Hind D Mills A Jayasuriya R Totton N Desoysa L Chatters R Young B Sherratt F Latimer N Keetharuth A Kenison L Walters S Gardner A Ahuja S Campbell L Greenwood S Cole A

Aims. Scoliosis is a lateral curvature of the spine with associated rotation, often causing distress due to appearance. For some curves, there is good evidence to support the use of a spinal brace, worn for 20 to 24 hours a day to minimize the curve, making it as straight as possible during growth, preventing progression. Compliance can be poor due to appearance and comfort. A night-time brace, worn for eight to 12 hours, can achieve higher levels of curve correction while patients are supine, and could be preferable for patients, but evidence of efficacy is limited. This is the protocol for a randomized controlled trial of ‘full-time bracing’ versus ‘night-time bracing’ in adolescent idiopathic scoliosis (AIS). Methods. UK paediatric spine clinics will recruit 780 participants aged ten to 15 years-old with AIS, Risser stage 0, 1, or 2, and curve size (Cobb angle) 20° to 40° with apex at or below T7. Patients are randomly allocated 1:1, to either full-time or night-time bracing. A qualitative sub-study will explore communication and experiences of families in terms of bracing and research. Patient and Public Involvement & Engagement informed study design and will assist with aspects of trial delivery and dissemination. Discussion. The primary outcome is ‘treatment failure’ (Cobb angle progression to 50° or more before skeletal maturity); skeletal maturity is at Risser stage 4 in females and 5 in males, or ‘treatment success’ (Cobb angle less than 50° at skeletal maturity). The comparison is on a non-inferiority basis (non-inferiority margin 11%). Participants are followed up every six months while in brace, and at one and two years after skeletal maturity. Secondary outcomes include the Scoliosis Research Society 22 questionnaire and measures of quality of life, psychological effects of bracing, adherence, anxiety and depression, sleep, satisfaction, and educational attainment. All data will be collected through the British Spine Registry. Cite this article: Bone Jt Open 2023;4(11):873–880


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1703 - 1708
1 Dec 2020
Miyanji F Pawelek J Nasto LA Simmonds A Parent S

Aims. Spinal fusion remains the gold standard in the treatment of idiopathic scoliosis. However, anterior vertebral body tethering (AVBT) is gaining widespread interest, despite the limited data on its efficacy. The aim of our study was to determine the clinical efficacy of AVBT in skeletally immature patients with idiopathic scoliosis. Methods. All consecutive skeletally immature patients with idiopathic scoliosis treated with AVBT enrolled in a longitudinal, multicentre, prospective database between 2013 and 2016 were analyzed. All patients were treated by one of two surgeons working at two independent centres. Data were collected prospectively in a multicentre database and supplemented retrospectively where necessary. Patients with a minimum follow-up of two years were included in the analysis. Clinical success was set a priori as a major coronal Cobb angle of < 35° at the most recent follow-up. Results. A total of 57 patients were included in the study. Their mean age was 12.7 years (SD 1.5; 8.2 to 16.7), with 95% being female. The mean preoperative Sanders score and Risser grade was 3.3 (SD 1.2), and 0.05 (0 to 3), respectively. The majority were thoracic tethers (96.5%) and the mean follow-up was 40.4 months (SD 9.3). The mean preoperative major curve of 51° (SD 10.9°; 31° to 81°) was significantly improved to a mean of 24.6° (SD 11.8°; 0° to 57°) at the first postoperative visit (45.6% (SD 17.6%; 7% to 107%); p < 0.001)) with further significant correction to a mean of 16.3° (SD 12.8°; -12 to 55; p < 0.001) at one year and a significant correction to a mean of 23° (SD 15.4°; -18° to 57°) at the final follow-up (42.9% (-16% to 147%); p < 0.001). Clinical success was achieved in 44 patients (77%). Most patients reached skeletal maturity, with a mean Risser score of 4.3 (SD 1.02), at final follow-up. The complication rate was 28.1% with a 15.8% rate of unplanned revision procedures. Conclusion. AVBT is associated with satisfactory correction of deformity and an acceptable complication rate when used in skeletally immature patients with idiopathic scoliosis. Improved patient selection and better implant technology may improve the 15.8% rate of revision surgery in these patients. Further scrutiny of the true effectiveness and long-term risks of this technique remains critical. Cite this article: Bone Joint J 2020;102-B(12):1703–1708


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 16 - 16
1 Sep 2021
Bernard J Herzog J Bishop T Fragkakis A Fenner C Ajayi B Lui DF
Full Access

Introduction. Vertebral body tethering (VBT) is a non-fusion technique to correct scoliosis. It allows correction of scoliosis through Growth Modulation (GM) by tethering the convex side to allow concave unrestricted growth similar to the hemi-epiphysiodesis concept. The other modality is Anterior Scoliosis Correction (ASC) where the tether is able to perform most of the correction immediately where limited growth is expected. Methods. Retrospective analysis of clinical and radiographic data of 20 patients between 2014 to 2016 with a mean 5 year follow (range 4–6). Results. There were 10 patients in each group with a total of 23 curves operated on. VBT-GM mean age was 12.5y with mean Risser 0.63 and VBT-ASC was14.9y with a Risser of 3.66. Mean preop VBT-GM Cobb was 46° with a Fulcrum unbend of 13.6° compared to VBT-ASC 56.9° with 32.2° unbend. Postop VBT-GM was 21° and VBT-ASC Cobb was 10.8°. The early postop Correction Rate was 54.3% vs 81% whereas FBCI was 77.1% vs 186.6%. The last XR at mean 5y was 22.2° (VBT-GM) and 16.9° (VBT-ASC) 95% avoided fusion. Open TRC group had 3 over corrections. 1 patient alone had overcorrection, unplanned second stage and conversion to fusion. Discussion and Conclusion. We show a high success rate (95%) in helping children avoid fusion. Vertebral body tethering is a safe technique for correction of scoliosis in the skeletally immature patient. This is the first report at 5 years that shows two modalities of VBT can be employed depending on the skeletal maturity of the patient: Growth Modulation and Anterior Scoliosis Correction


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 11 - 11
1 Oct 2014
Tsirikos A Hathorn C Fall A McGurk S Urquhart D
Full Access

There are limited data on scoliosis in cystic fibrosis (CF), and the two most recent studies came to opposite conclusions. Reported prevalence ranges from 2% (within the normal range for the general population) to 15.5%. We felt that a recent study under-estimated the prevalence due to a very young population (mean age 10.9 years), since scoliosis develops most commonly in adolescents. We hypothesised that scoliosis is more prevalent in adolescents with CF compared to the general population. The aim of our study was to determine the incidence of scoliosis in adolescents with CF followed to and beyond skeletal maturity and describe the type of spinal deformity. We included all patients in our CF clinic aged >10 years, and those who have transitioned to adult services in the last 10 years. Patients with a co-existent neuromuscular condition were excluded. We conducted a retrospective observational study. Most recent chest radiographs at end of spinal growth, or those taken at transition to adult services, were reviewed by a Consultant Radiologist and a Consultant Spine Surgeon. Scoliosis was defined as a Cobb angle of >10° in the coronal plane. Demographics and characteristics of the curves were recorded. Our cohort included 143 CF patients (48% male) with a mean age at the time of chest radiograph of 18 years (range 15–22 years). 16 (6 male) subjects were noted to have scoliosis with a mean (range) Cobb angle of 14° (10–38°) giving a prevalence of 11%. 13 were single thoracic curves, 2 double and 1 triple. The majority were non-progressive short mid-thoracic curves, convex to the right. 5 curves were progressive, only one of which was significant and required bracing to the end of growth but no surgical treatment. We found a prevalence of scoliosis in our adolescent CF population that is significantly greater than the general population. Only one curve was significant and progressive requiring bracing, the remainder being minor and non-progressive. A strength of our study is that all patients had achieved skeletal maturity at the time of latest X-ray and, therefore, development or further progression of scoliosis is unlikely. The negative effect of scoliosis on lung function is well-documented. With the progressive nature of CF lung disease, scoliosis may have further deleterious effects. Bone disease is increasingly recognised in CF patients, with osteopenia and osteoporosis occurring earlier and more frequently than in the general population (38% & 24% respectively in 18–32 year old CF patients). To date, studies have failed to show a correlation between scoliosis, lung function and bone mineral density. The paradigm of a radiologically significant (Cobb angle >10°) versus a clinically important scoliosis remains


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 684 - 689
1 May 2012
Tsirikos AI Smith G

We reviewed 31 consecutive patients with Friedreich’s ataxia and scoliosis. There were 24 males and seven females with a mean age at presentation of 15.5 years (8.6 to 30.8) and a mean curve of 51° (13° to 140°). A total of 12 patients had thoracic curvatures, 11 had thoracolumbar and eight had double thoracic/lumbar. Two patients had long thoracolumbar collapsing scoliosis with pelvic obliquity and four had hyperkyphosis. Left-sided thoracic curves in nine patients (45%) and increased thoracic kyphosis differentiated these deformities from adolescent idiopathic scoliosis. There were 17 patients who underwent a posterior instrumented spinal fusion at mean age of 13.35 years, which achieved and maintained good correction of the deformity. Post-operative complications included one death due to cardiorespiratory failure, one revision to address nonunion and four patients with proximal junctional kyphosis who did not need extension of the fusion. There were no neurological complications and no wound infections. The rate of progression of the scoliosis in children kept under simple observation and those treated with bracing was less for lumbar curves during bracing and similar for thoracic curves. The scoliosis progressed in seven of nine children initially treated with a brace who later required surgery. Two patients presented after skeletal maturity with balanced curves not requiring correction. Three patients with severe deformities who would benefit from corrective surgery had significant cardiac co-morbidities


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 33 - 33
1 Feb 2018
Richardson S Rodrigues-Pinto R Hoyland J
Full Access

Background. While the human embryonic, foetal and juvenile intervertebral disc (IVD) is composed of large vacuolated notochordal cells, these morphologically distinct cells are lost with skeletal maturity being replaced by smaller nucleus pulpous cells. Notochordal cells are thought to be fundamental in maintaining IVD homeostasis and, hence, their loss in humans may be a key initiator of degeneration, leading ultimately to back pain. Therefore, it is essential to understand the human notochordal cell phenotype to enable the development of novel biological/regenerative therapies. Methods. CD24+ notochordal cells and CD24- sclerotomal cells were sorted from enzymatically-digested human foetal spines (7.5–14 WPC, n=5) using FACS. Sorting accuracy was validated using qPCR for known notochordal markers and Affymetrix cDNA microarrays performed. Differential gene expression was confirmed (qPCR) and Interactive Pathway Analysis (IPA) performed. Results. CD24+ve notochordal cells (mean 10.4%) and CD24-ve sclerotomal cells (mean 60.9% CD24-) were successfully sorted. Higher expression of notochordal markers CD24 and brachyury was identified in CD24+ve cells. Hierarchical clustering and PCA mapping revealed distinct differences in the gene expression profile of CD24+ and CD24- cells. Top notochordal markers were CD24, STMN2. RTN1, PRPH and CXCL12. IPA identified IL-1 receptor antagonist (IL-1RN) and noggin as master regulators of notochordal cell phenotype. Conclusions. This study has, for the first time, defined human foetal notochordal cell phenotype and identified important pathways and upstream regulators. In particular, IL-1RN and noggin are of interest as master regulators of notochordal cell function, suggesting vital roles for these molecules in IVD development and homeostasis. Conflicts of interest. No conflicts of interest. Sources of funding. We would like to acknowledge UKRMP Acellular Hub, MRC, NIHR Musculoskeletal BRU and The Rosetrees Trust for funding this research


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 857 - 864
1 Jul 2011
Tsirikos AI Jain AK

This review of the literature presents the current understanding of Scheuermann’s kyphosis and investigates the controversies concerning conservative and surgical treatment. There is considerable debate regarding the pathogenesis, natural history and treatment of this condition. A benign prognosis with settling of symptoms and stabilisation of the deformity at skeletal maturity is expected in most patients. Observation and programmes of exercise are appropriate for mild, flexible, non-progressive deformities. Bracing is indicated for a moderate deformity which spans several levels and retains flexibility in motivated patients who have significant remaining spinal growth. The loss of some correction after the completion of bracing with recurrent anterior vertebral wedging has been reported in approximately one-third of patients. Surgical correction with instrumented spinal fusion is indicated for a severe kyphosis which carries a risk of progression beyond the end of growth causing cosmetic deformity, back pain and neurological complications. There is no consensus on the effectiveness of different techniques and types of instrumentation. Techniques include posterior-only and combined anteroposterior spinal fusion with or without posterior osteotomies across the apex of the deformity. Current instrumented techniques include hybrid and all-pedicle screw constructs


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 166 - 171
1 Feb 2023
Ragborg LC Dragsted C Ohrt-Nissen S Andersen T Gehrchen M Dahl B

Aims

Only a few studies have investigated the long-term health-related quality of life (HRQoL) in patients with an idiopathic scoliosis. The aim of this study was to investigate the overall HRQoL and employment status of patients with an idiopathic scoliosis 40 years after diagnosis, to compare it with that of the normal population, and to identify possible predictors for a better long-term HRQoL.

Methods

We reviewed the full medical records and radiological reports of patients referred to our hospital with a scoliosis of childhood between April 1972 and April 1982. Of 129 eligible patients with a juvenile or adolescent idiopathic scoliosis, 91 took part in the study (71%). They were evaluated with full-spine radiographs and HRQoL questionnaires and compared with normative data. We compared the HRQoL between observation (n = 27), bracing (n = 46), and surgical treatment (n = 18), and between thoracic and thoracolumbar/lumbar (TL/L) curves.


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 257 - 264
1 Feb 2022
Tahir M Mehta D Sandhu C Jones M Gardner A Mehta JS

Aims

The aim of this study was to compare the clinical and radiological outcomes of patients with early-onset scoliosis (EOS), who had undergone spinal fusion after distraction-based spinal growth modulation using either traditional growing rods (TGRs) or magnetically controlled growing rods (MCGRs).

Methods

We undertook a retrospective review of skeletally mature patients who had undergone fusion for an EOS, which had been previously treated using either TGRs or MCGRs. Measured outcomes included sequential coronal T1 to S1 height and major curve (Cobb) angle on plain radiographs and any complications requiring unplanned surgery before final fusion.


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 495 - 503
1 Apr 2022
Wong LPK Cheung PWH Cheung JPY

Aims

The aim of this study was to assess the ability of morphological spinal parameters to predict the outcome of bracing in patients with adolescent idiopathic scoliosis (AIS) and to establish a novel supine correction index (SCI) for guiding bracing treatment.

Methods

Patients with AIS to be treated by bracing were prospectively recruited between December 2016 and 2018, and were followed until brace removal. In all, 207 patients with a mean age at recruitment of 12.8 years (SD 1.2) were enrolled. Cobb angles, supine flexibility, and the rate of in-brace correction were measured and used to predict curve progression at the end of follow-up. The SCI was defined as the ratio between correction rate and flexibility. Receiver operating characteristic (ROC) curve analysis was carried out to assess the optimal thresholds for flexibility, correction rate, and SCI in predicting a higher risk of progression, defined by a change in Cobb angle of ≥ 5° or the need for surgery.


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1133 - 1141
1 Jun 2021
Tsirikos AI Wordie SJ

Aims

To report the outcome of spinal deformity correction through anterior spinal fusion in wheelchair-bound patients with myelomeningocele.

Methods

We reviewed 12 consecutive patients (7M:5F; mean age 12.4 years (9.2 to 16.8)) including demographic details, spinopelvic parameters, surgical correction, and perioperative data. We assessed the impact of surgery on patient outcomes using the Spina Bifida Spine Questionnaire and a qualitative questionnaire.


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 739 - 745
1 Apr 2021
Mehta JS Hodgson K Yiping L Kho JSB Thimmaiah R Topiwala U Sawlani V Botchu R

Aims

To benchmark the radiation dose to patients during the course of treatment for a spinal deformity.

Methods

Our radiation dose database identified 25,745 exposures of 6,017 children (under 18 years of age) and adults treated for a spinal deformity between 1 January 2008 and 31 December 2016. Patients were divided into surgical (974 patients) and non-surgical (5,043 patients) cohorts. We documented the number and doses of ionizing radiation imaging events (radiographs, CT scans, or intraoperative fluoroscopy) for each patient. All the doses for plain radiographs, CT scans, and intraoperative fluoroscopy were combined into a single effective dose by a medical physicist (milliSivert (mSv)).


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 725 - 733
1 Apr 2021
Lai MKL Cheung PWH Samartzis D Karppinen J Cheung KMC Cheung JPY

Aims

The aim of this study was to determine the differences in spinal imaging characteristics between subjects with or without lumbar developmental spinal stenosis (DSS) in a population-based cohort.

Methods

This was a radiological analysis of 2,387 participants who underwent L1-S1 MRI. Means and ranges were calculated for age, sex, BMI, and MRI measurements. Anteroposterior (AP) vertebral canal diameters were used to differentiate those with DSS from controls. Other imaging parameters included vertebral body dimensions, spinal canal dimensions, disc degeneration scores, and facet joint orientation. Mann-Whitney U and chi-squared tests were conducted to search for measurement differences between those with DSS and controls. In order to identify possible associations between DSS and MRI parameters, those who were statistically significant in the univariate binary logistic regression were included in a multivariate stepwise logistic regression after adjusting for demographics. Odds ratios (ORs) and 95% confidence intervals (CIs) were reported where appropriate.


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 268 - 272
1 Feb 2020
Diarbakerli E Savvides P Wihlborg A Abbott A Bergström I Gerdhem P

Aims

Idiopathic scoliosis is the most common spinal deformity in adolescents and children. The aetiology of the disease remains unknown. Previous studies have shown a lower bone mineral density in individuals with idiopathic scoliosis, which may contribute to the causation. The aim of the present study was to compare bone health in adolescents with idiopathic scoliosis with controls.

Methods

We included 78 adolescents with idiopathic scoliosis (57 female patients) at a mean age of 13.7 years (8.5 to 19.6) and 52 age- and sex-matched healthy controls (39 female patients) at a mean age of 13.8 years (9.1 to 17.6). Mean skeletal age, estimated according to the Tanner-Whitehouse 3 system (TW3), was 13.4 years (7.4 to 17.8) for those with idiopathic scoliosis, and 13.1 years (7.4 to 16.5) for the controls. Mean Cobb angle for those with idiopathic scoliosis was 29° (SD 11°). All individuals were scanned with dual energy x-ray absorptiometry (DXA) and peripheral quantitative CT (pQCT) of the left radius and tibia to assess bone density. Statistical analyses were performed with independent-samples t-test, the Mann-Whitney U test, and the chi-squared test.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 131 - 140
1 Jan 2021
Lai MKL Cheung PWH Samartzis D Karppinen J Cheung KMC Cheung JPY

Aims

To study the associations of lumbar developmental spinal stenosis (DSS) with low back pain (LBP), radicular leg pain, and disability.

Methods

This was a cross-sectional study of 2,206 subjects along with L1-S1 axial and sagittal MRI. Clinical and radiological information regarding their demographics, workload, smoking habits, anteroposterior (AP) vertebral canal diameter, spondylolisthesis, and MRI changes were evaluated. Mann-Whitney U tests and chi-squared tests were conducted to search for differences between subjects with and without DSS. Associations of LBP and radicular pain reported within one month (30 days) and one year (365 days) of the MRI, with clinical and radiological information, were also investigated by utilizing univariate and multivariate logistic regressions.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 148 - 156
1 Jan 2021
Tsirikos AI Carter TH

Aims

To report the surgical outcome of patients with severe Scheuermann’s kyphosis treated using a consistent technique and perioperative management.

Methods

We reviewed 88 consecutive patients with a severe Scheuermann's kyphosis who had undergone posterior spinal fusion with closing wedge osteotomies and hybrid instrumentation. There were 55 males and 33 females with a mean age of 15.9 years (12.0 to 24.7) at the time of surgery. We recorded their demographics, spinopelvic parameters, surgical correction, and perioperative data, and assessed the impact of surgical complications on outcome using the Scoliosis Research Society (SRS)-22 questionnaire.


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1560 - 1566
2 Nov 2020
Mehdian H Haddad S Pasku D Nasto LA

Aims

To report the mid-term results of a modified self-growing rod (SGR) technique for the treatment of idiopathic and neuromuscular early-onset scoliosis (EOS).

Methods

We carried out a retrospective analysis of 16 consecutive patients with EOS treated with an SGR construct at a single hospital between September 2008 and December 2014. General demographics and deformity variables (i.e. major Cobb angle, T1 to T12 length, T1 to S1 length, pelvic obliquity, shoulder obliquity, and C7 plumb line) were recorded preoperatively, and postoperatively at yearly follow-up. Complications and revision procedures were also recorded. Only patients with a minimum follow-up of five years after surgery were included.