Advertisement for orthosearch.org.uk
Results 1 - 20 of 207
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 163 - 163
1 Sep 2012
Albers C Hofstetter W Siebenrock K Landmann R Klenke F
Full Access

Introduction. Infection of endoprostheses is a serious complication in orthopedic surgery. As silver is known for its antibactierial effects, silver-coated endoprostheses have gained increased attention to decrease infection rates. However, cytotoxic effects of silver on bone cells have not been investigated in detail. We aimed to investigate whether silver nano-/microparticles and ionic silver exert cytotoxic effects on osteoblasts and osteoclasts in vitro and to correlate potential effects with the antibacterial effect on Staph. epidermidis. Methods. Murine osteoclasts (OC) and murine osteoblasts (OB) were treated with silver particles (avg. sizes: 50nm, 3μm, 30μm, 8μg/ml–500μg/ml) and Ag+NO3- (0.5μg/ml–500μg/ml). Silver treatment started on day 3 to prevent interference with cell adhesion. XTT assays were performed to assess cell viability. Tartrate resistant acidic phosphatase (TRAP) activity and alkaline phosphatase (ALP) activity served as measures for OC and OB differentiation, respectively. The release of silver ions from silver particles was quantified with atomic emission spectometry (AES). Titanium particles (avg. sizes: 50nm and 30μm) were used as controls to investigate whether potential silver effects were particle- or ion-mediated. The antimicrobial activity of silver ions and particles was tested with Staph. epidermidis agar inhibition assays. Results. Ionic silver had the strongest impact on cell differentiation and viability of OC and OB (OC differentiation: mean IC50 = 5 μg/ml, OC viability: mean IC50 = 14 μg/ml, OB differentiation: mean IC50 = 1 μg/ml, OB viability: mean IC50 = 1 μg/ml). Silver nanoparticles decreased cell differentiation and viability in a dose dependent manner (OC differentiation: mean IC50 = 5μg/ml, OC viability: mean IC50 = 14μg/ml, OB differentiation: mean IC50 = 1μg/ml, OB viability: mean IC50 = 1μg/ml). Silver microparticles as well as titanium nano- and microparticles had no effect on cell differentiation and viability. AES showed a size and dose dependent release of silver ions from silver nano- and microparticles. Agar inhibition assays showed a dose correlation of the antibacterial effect of silver with the cytotoxic effects on OB and OC. Conclusion. Silver nanoparticles and silver ions exert dose-dependent cytotoxic effects on OB and OC in vitro resulting in a severe alteration of cell differentiation and viability. The effect of silver on OB and OC seems to be mediated primarily by silver ions and correlates with the substance's antibacterial effects. The cytotoxicity of silver nanoparticles is mediated primarily by the size-dependent liberation of silver ions. Disturbance of OB and OC survival may have deleterious effects on the osseointegration of orthopedic implants. Further in vivo studies are needed to investigate the osseointegration of silver coated implants prior to their widespread clinical application


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 423 - 429
1 Mar 2021
Diez-Escudero A Hailer NP

Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver release rates. Safety issues, such as the occurrence of argyria, have been a cause for concern, and the efficacy of silver coatings in terms of preventing PJI is also controversial. The application of silver coatings is uncommon on parts of implants intended for cementless fixation in host bone, but this option might be highly desirable since the modification of implant surfaces in order to improve osteoconductivity can also increase bacterial adhesion. Therefore, an optimal silver content that inhibits bacterial colonization while maintaining osteoconductivity is crucial if silver were to be applied as a coating on parts intended for bone contact. This review summarizes the different methods used to apply silver coatings to arthroplasty components, with a focus on the amount and duration of silver release from the different coatings; the available experience with silver-coated implants that are in clinical use today; and future strategies to balance the effects of silver on bacteria and eukaryotic cells, and to develop silver-coated titanium components suitable for bone ingrowth. Cite this article: Bone Joint J 2021;103-B(3):423–429


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 582 - 589
1 May 2015
Brennan SA Ní Fhoghlú C Devitt BM O’Mahony FJ Brabazon D Walsh A

Implant-associated infection is a major source of morbidity in orthopaedic surgery. There has been extensive research into the development of materials that prevent biofilm formation, and hence, reduce the risk of infection. Silver nanoparticle technology is receiving much interest in the field of orthopaedics for its antimicrobial properties, and the results of studies to date are encouraging. Antimicrobial effects have been seen when silver nanoparticles are used in trauma implants, tumour prostheses, bone cement, and also when combined with hydroxyapatite coatings. Although there are promising results with in vitro and in vivo studies, the number of clinical studies remains small. Future studies will be required to explore further the possible side effects associated with silver nanoparticles, to ensure their use in an effective and biocompatible manner. Here we present a review of the current literature relating to the production of nanosilver for medical use, and its orthopaedic applications. Cite this article: Bone Joint J 2015; 97-B:582–9


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 74 - 74
1 Dec 2020
Köse N Bayrak ÇH Köse AA Sevencan A Toktaş AG Doğan A
Full Access

Orthopaedic and trauma implant related infection remains one of the major complications that negatively impact clinical outcome and significantly increase healthcare expenditure. Hydroxyapatite has been used for many years to increase implant osseointegration. Silver has been introduced into hydroxyapatite as an antimicrobial coating for orthopedic implants. This surface coatings can both increase tissue compatibility and prevent implant-related infections. We examined infection markers and blood silver values, liver and kidney function tests of 30 patients with of three groups of orthopedic implants, external fixators, intramedullary nails and hip replacements, coated with Ag + ion doped CaP based ceramic powder to determine safety and effectiveness of this dual-function coating. During 1 year follow-up, the pin sites were observed at the external fixator group, and wound areas for the proximal femoral nail and hip arthroplasty group at regular intervals. In addition, liver and kidney function tests, infection markers and blood silver values were checked in patients. In the external fixator group, only 4 out of 91 pin sites (%4.39) were infected. The wound areas healed without any problem in patients with proximal femoral nails and hip arthroplasty. There was no side effect suggesting silver toxicity such as systemic toxic side effect or argyria in any patient and blood silver level did not increase. Compared to similar patient groups in the literature, much lower infection rates were obtained (p = 0.001), and implant osseointegration was good. In patients with chronic infection, the implants were applied acutely after removing the primary implant and with simple debridement. Unlike other silver coating methods, silver was trapped in hydroxyapatite crystals in the ionic form, which is released from the coating during the process of osseointegration, thus, the silver was released into the systemic circulation gradually that showed antibacterial activity locally. We conclude that the use of orthopedic implants with a silver ion added calcium phosphate-based special coating is a safe method to prevent the implant-related infection. This work was supported by TUBİTAK Project Number 315S101


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 32 - 32
1 Mar 2021
Graziani G Cappelletti M Ghezzi D Costantini P Fedi S De Carolis M Maltarello M Baldini N
Full Access

Infections are among the main complications connected to implantation of biomedical devices, having high incidence rate and severe outcome. Since their treatment is challenging, prevention must be preferred. For this reason, solutions capable of exerting suitable efficacy while not causing toxicity and/or development of resistant bacterial strains are needed. To address infection, inorganic antibacterial coatings, and in particular silver coatings, have been extensively studied and used in the clinical practice, but some drawbacks have been evidenced, such as scarce adhesion to the substrate, delamination, or scarce control over silver release. Here, antibacterial nanostructured silver-based thin films are proposed, obtained by a novel plasma-assisted technique, Ionized Jet Deposition (IJD). Coatings are obtained by deposition of metallic silver targets. Films thickness is selected based on previous results aimed at measuring extent and duration of silver release and at evaluating toxicity to host cells (fibroblasts). Here, composition (grazing incidence XRD) and morphology (SEM) of the obtained coatings are characterized for deposition onto different substrates, both metallic and polymeric. For heat sensitive substrates, possible alterations caused by coatings deposition in terms of morphology (SEM) and composition (FT-IR) is assessed. Then, a proof-of-concept study of the capability of these films to inhibit microbial biofilm formation is performed by using two different supports i.e., the Calgary Biofilm Device and the microplates. To the best of the Authors knowledge, this is the first study describing the application of specific anti-biofilm analyses to nanostructured coatings. In particular, anti-biofilm activities are tested against the following pathogenic strains: Escherichia (E.) coli NCTC12923, Staphylococcus (S.) aureus ATCC29213 and S. aureus 86. Among these, the strain 86 is not only pathogen but it also possesses several antibiotic resistance genes, allowing the evaluation of the utilization of nanostructured coatings as an alternative anti-microbial system to face the global threat of antibiotic resistance. Results indicate that films deposited from silver targets are composed of nanosized aggregates of metallic silver, indicating a perfect transfer of composition from the deposition target to the coatings. Results obtained here indicate that the films have significant antibacterial and antibiofilm activity. In addition, they prove that the system can be successfully applied for evaluation of coatings antibacterial efficacy for biomedical applications


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 129 - 129
1 Apr 2019
Lowther M Cox SC Grover L
Full Access

Introduction. Implant associated infections are responsible for over 10 % of recorded orthopaedic revision surgeries across the UK, with higher infection rates commonly observed for other endoprostheses such as cranioplasties. To prevent colonization and biofilm formation on implant surfaces, the use of silver coatings has shown positive results in clinical setting due to its synergistic function with conventional antibiotic prophylaxes. Additive manufacturing allows manufacture of entirely new implant geometries such as lattice structures to enhance osseointegration, however this limits the ability to uniformly coat implants. Direct integration of silver into the powder feedstock for selective laser melting (SLM) may allow manufacture of a biomedical alloy with innate, long lasting antimicrobial properties without compromising possible geometries and with no coating process necessary. Methods. Feedstock powders of 15–45 micron Grade 5 Ti-64 (Renishaw Plc) and Ag-999 powder (CooksonGold) were characterized using laser particle size analysis, ICP-OES, LECO-ONH, and morphological analysis in SEM. A blend of Ti-64 with 3 wt% Ag-999 powder (Ti-643) was produced by tumble blending, and validated by SEM and EDS. Parameters for manufacture were established using a 17 point design of experiment (DoE) exploring a 2D parameter space of applied laser power and laser scanning speed. Samples were manufactured using a ConceptLaser M2 LaserCusing SLM. Density was assessed by He pycnometry, and cross-sections analysed for defects by optical microscopy. Silver distribution was mapped by micro X-Ray Fluoroscopy (µXRF) and energy-dispersive X-ray spectroscopy (EDS). Optimum parameters were identified and used to manufacture all subsequent samples. Cylindrical Ti-643 samples were manufactured for further physical characterization and bacterial investigation, alongside control Ti-64 samples manufactured using existing optimum parameters. Samples were polished using silicon carbide papers to a 4000-grit surface finish. Contact angle measurements were made by goniometry. Silver elution characteristics were assessed by immersion in water refreshed on a daily basis, and sampled over a 14 day period using ICP-OES. Viability of S. aureus was compared to control samples according to the Japanese standard test method, JIS Z 2801:2000. Results. Across the entire parameter space tested, selective laser melting (SLM) of all 17 samples was successful, with no delamination. An increased recoater blade speed was required to achieve uniform spreading in process versus pure Ti-6Al- 4V powder, indicating an increased cohesivity of the Ti-643 blend. The presence of silver in all samples was confirmed by µXRF, indicating that there was no excessive evaporation of silver in-process. Laser parameters were found to alter the defect density and microstructure scale, though sample density was tightly clustered in a range from 4.415 to 4.453 gcm-3, showing relatively low process variation. No significant difference in bacterial survival was found between control and Ti-643 samples, indicating that further microstructural optimization is needed to guarantee efficacy


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 33 - 33
1 Dec 2020
Diez-Escudero A Andersson BM Järhult JD Hailer NP
Full Access

Uncemented implants combining antimicrobial properties with osteoconductivity would be highly desirable in revision surgery due to periprosthetic joint infection (PJI). Silver coatings convey antibacterial properties, however, at the cost of toxicity towards osteoblasts. On the other hand, topological modifications such as increased surface roughness or porosity support osseointregation but simultaneously lead to enhanced bacterial colonization. In this study, we investigated the antibacterial and osteoconductive properties of silver-coated porous titanium (Ti) alloys manufactured by electron beam melting, rendering a macrostructure that mimics trabecular bone. Trabecular implants with silver coating (TR-Ag) or without coating (TR) were compared to grit-blasted Ti6Al4V (GB) and glass cover slips as internal controls. Physicochemical characterization was performed by X-ray diffraction (XRD) and energy dispersive X-rays (EDX) together with morphological characterization through electron scanning microscopy (SEM). Bacterial adherence after incubation of samples with Staphylococcus (S.) aureus and S. epidermidis strains harvested from PJI patients was quantitatively assessed by viable count after detachment of adherent bacteria by collagenase/dispase treatment. Primary human osteoblasts (hOB) were used to investigate the osteoconductive potential by lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) activity. Cell morphology was investigated by fluorescence microscopy after staining with carboxifluorescein diacetate succinimidyl ester (CFDA-SE) and 4′,6-diamidino-2-phenylindole (DAPI). The trabecular implants depicted a porosity of 70% with pore sizes of 600µm. The amount of silver analyzed by EDX accounted for 35%wt in TR-Ag but nil in TR. Silver-coated TR-Ag implants had 24% lower S. aureus viable counts compared to non-coated TR analogues, and 9% lower compared to GB controls. Despite trabecular implants, both with and without silver, had higher viable counts than GB, the viable count of S. epidermidis was 42% lower on TR-Ag compared to TR. The percentage of viable hOB, measured by LDH and normalized to controls and area at 1 day, was lower on both TR-Ag (18%) and on TR (13%) when compared with GB (89%). However, after 1 week, cell proliferation increased more markedly on trabecular implants, with a 5-fold increase on TR-Ag, a 3.4-fold increase on TR, and a 1.7-fold increase on GB. Furthermore, after 2 weeks of hOB culture, proliferation increased 20-fold on TR-Ag, 29-fold on TR, and 3.9-fold for GB, compared to 1 day. The osteoconductive potential measured by ALP illustrated slightly higher values for TR-Ag compared to TR at 1 day and 2 weeks, however below those of GB samples. Cell morphology assessed by microscopy showed abundant growth of osteoblast-like cells confined to the pores of TR-Ag and TR. Overall, our findings indicate that the silver coating of trabecular titanium exerts limited cytotoxic effects on osteoblasts and confers antimicrobial effects on two PJI-relevant bacterial strains. We conclude that improving material design by mimicking the porosity and architecture of cancellous bone can enhance osteoconductivity while the deposition of silver confers potent antimicrobial properties


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 251 - 251
1 Jun 2012
Unwin P Pickford M Shawcross J Blunn G Cannon S Grimer R
Full Access

Infected mega-endoprostheses are difficult to treat with systemic antibiotics due to encapsulation of the implant by fibrous tissue, formation of biofilms and antibiotic resistant bacteria. Modifying the implant surface by incorporating a bactericidal agent may reduce infection. Infection rates are typically in the range of 8% to 30%. This study describes a novel process method of “stitching-in” ionic silver into the implant surface, in vitro testing and its early clinical usage. A novel process has been developed to “stitch in” ionic silver into the upper surface of titanium alloy (Ti6Al4V). The process produces a modification by anodisation of the titanium alloy in dilute phosphoric acid, followed by absorption of silver from an aqueous solution. The engineered surface modification is therefore integral with the substrate and loaded with silver by an ion exchange reaction. Using this technique the maximum inventory of silver for typical a mega-prosthesis is 6mg and this is greater than 300 times lower than the No Observable Adverse Affects Level (NOAEL). Scanning electron microscopy revealed that the silver was concentrated in pits and forming reservoirs of ionic silver exposed to the body tissues. Laboratory-based studies focusing on the safety and efficacy of silver as a bactericidal agent have included investigation into cytotoxicity using fibroblast and osteoblast cell lines, the impact of silver in reducing corrosion and laboratory testing to establish if the modified surface has an effect on the wear and mechanical characteristics. A range of fatigue, static, tensile pull off tests were performed. The silver elution profiles for both silver loaded and HA coated over a silver loaded surface have been examined. Histological studies were also performed to examine the impact of the silver on osseointegration. The in vitro results confirm that silver is an effective antimicrobial agent. The mechanical characterization studies have identified that the surface treatment has no or minimal impact on the implant surface. Early results of the elution studies are encouraging showing that the HA coating of a silver loaded surface does not “seal” in the silver. To date (May 10) 147 silver treated mega-prostheses have been implanted since March 2006. The majority of implants were distal femoral (29%), proximal tibial (23%) or hemiplevic (10%). The most common indication was revision of a failed limb salvage reconstruction (58%), with the dominant cause of failure being infection. The next most common indication was bone tumour (31%) and the large majority were used in the high risk skeletal locations of the tibia (44%) and the pelvis (27%). Early clinical results are encouraging indicating a significant reduction in the incidence of infection. Three implants have been retrieved. An analysis of a proximal humeral replacement that had been in situ for 6 mths identified that there was 10-20% remaining on the implant surface. This novel process of “stitching-in” silver appears to be a safe and effective surface treatment in helping to control infections of mega-prostheses. This technology has the potential to be transferred to other arthroplasty joints


Bone & Joint Research
Vol. 8, Issue 8 | Pages 387 - 396
1 Aug 2019
Alt V Rupp M Lemberger K Bechert T Konradt T Steinrücke P Schnettler R Söder S Ascherl R

Objectives. Preclinical data showed poly(methyl methacrylate) (PMMA) loaded with microsilver to be effective against a variety of bacteria. The purpose of this study was to assess patient safety of PMMA spacers with microsilver in prosthetic hip infections in a prospective cohort study. Methods. A total of 12 patients with prosthetic hip infections were included for a three-stage revision procedure. All patients received either a gentamicin-PMMA spacer (80 g to 160 g PMMA depending on hip joint dimension) with additional loading of 1% (w/w) of microsilver (0.8 g to 1.6 g per spacer) at surgery 1 followed by a gentamicin-PMMA spacer without microsilver at surgery 2 or vice versa. Implantation of the revision prosthesis was carried out at surgery 3. Results. In total, 11 of the 12 patients completed the study. No argyria or considerable differences in laboratory parameters were detected. Silver blood concentrations were below or around the detection limit of 1 ppb in ten of the 11 patients. A maximum of 5.6 ppb at 48 hours after implantation of the silver spacer, which is below the recommended maximum level of 10 ppb, was found in one patient. No silver was detected in the urine. Drainage fluids showed concentrations between 16.1 ppb and 23.3 ppb at 12 hours after implantation of the silver spacers, and between 16.8 ppb to 25.1 ppb at 48 hours after implantation. Pathohistological assessment of the periprosthetic membrane did not reveal any differences between the two groups. Conclusion. Microsilver-loaded gentamicin-PMMA spacers showed good biocompatibility and the broad antimicrobial activity warrants further clinical research to assess its effectivity in reducing infection rates in prosthetic joint infection. Cite this article: V. Alt, M. Rupp, K. Lemberger, T. Bechert, T. Konradt, P. Steinrücke, R. Schnettler, S. Söder, R. Ascherl. Safety assessment of microsilver-loaded poly(methyl methacrylate) (PMMA) cement spacers in patients with prosthetic hip infections: Results of a prospective cohort study. Bone Joint Res 2019;8:387–396. DOI: 10.1302/2046-3758.88.BJR-2018-0270.R1


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 108 - 108
1 Mar 2017
Reitman R Buch R Temple T Eberle R Kerzhner E
Full Access

INTRODUCTION. Post-operative infections following end-stage joint salvage reconstruction, tumor resection and megaprosthetic reconstruction is a major problem because of increasing infection rates in this patient cohort. The success of treatment and longevity is limited because current prosthetic composites do not decrease infection rates in these patients. Silver coating is an innovative development in the prevention of post-operative infection. Presented here is the current knowledge of the use of silver for this patient population including;. The current knowledge of the use of silver coated prostheses for infection control,. Concerns with ion release and toxicity,. Present current published results and USA experience. Discuss current regulatory issues both domestically (USA) and worldwide. METHODS. We report the results of a comprehensive review of the technology of silver coating application to prostheses and the published clinical results of the success of decreasing the incidence of post-operative infection following tumor resection and limb salvage. The current regulatory status of silver use for orthopaedics will also be discussed. DISCUSSION AND CONCLUSION. The potential for the use and success of silver coated megaprostheses following limb salvage and tumor resection is great importance and, based on our review shows significance in the decrease of post-operative infection without adverse issues of silver toxicity (Argyria). This option is an alternative to permanent fusion or the finality of amputation. While the majority of the regulatory world has allowed the routine use of silver coated megaprostheses for infection control, there still exists a few regulatory panels, including the US-FDA, that have yet to approve the routine use of silver coated megaprostheses for infection control following tumor resection and limb salvage


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 79 - 79
1 Dec 2019
Arens D Zeiter S Paulin T Ranjan N Alt V
Full Access

Aim. Silver is known for its excellent antimicrobial activity, including activity against multiresistant strains. The aim of the current study was to analyze the biocompatibility and potential influence on the fracture healing process a silver-coating technology for locking plates compared to silver-free locking plates in a rabbit model. Methods. The implants used in this study were 7-hole titanium locking plates, and plasma electrolytic oxidation (PEO) silver coated equivalents. A total of 24 rabbits were used in this study (12 coated, 12 non-coated). An osteotomy of the midshaft of the humerus was created with an oscillating saw and the humerus stabilized with the 7 hole locking plates with a total of 6 screws. X-rays were taken on day 0, week 2, 4, 6, 8, and 10 for continuous radiographical evaluation of the fracture healing. All animals were euthanized after 10 weeks and further assessment was performed using X-rays, micro-CT, non-destructive four-point bending biomechanical testing and histology. Furthermore, silver concentration was measured in the kidney, liver, spleen and brain. Results. X-rays showed normal undisturbed healing of the osteotomy in all animals without any differences between the two groups over the entire X-ray analysis over 10 weeks (Figure 1). Callus formation was observed up to week 4 to 5 followed by callus remodeling after 6 weeks indicating physiological fracture healing pattern in both the silver and in the silver free group. Micro CT analysis revealed overall tissue (callus and cortical bone) volume as well as tissue density to be comparable between the two groups. Mechanical testing showed comparable stiffness with an average stiffness relative to contralateral bones of 75.7 ± 16.1% in the silver free control group compared to 69.7 ± 18.5% (p-value: 0.46). Histology showed no remarkable difference in the analysis of the healed osteotomy gap or in the surrounding soft tissue area. Silver content was found to be close to baseline values without differences between the two groups. Conclusions. This study shows that the presented antimicrobial silver surface modification for locking plates has a good biocompatibility without any negative influence on the fracture healing processes compared to the silver free control group. This allows for further clinical investigation of this silver technology for locking plates in fracture patients with an elevated infection risk, e.g. in patients with open fractures. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 100 - 100
1 Aug 2012
Coathup M Shawcross J Scarsbrook C Korda M Hanoun A Pickford M Agg P Blunn G
Full Access

Introduction. A modified anodisation technique where a titanium surface releases bactericidal concentrations of silver was developed and called Agluna. Our hypothesis was that silver incorporation was bactericidal and had no effects on the viability of fibroblasts and osteoblasts, would have no negative effect on interfacial shear strength and bone contact in an in vivo trans-cortical implant ovine model. Methods. In vitro: Titanium alloy discs were either polished (Ti), anodised (Ano), anodised or Agluna treated (Ag) or anodised and Agluna treated followed by a conditioning step (Ag C). Conditioning was achieved by incubating discs in culture fluid for 48 hrs. The bactericidal effect of these discs was tested by measuring the zone of inhibition of different bacteria grown on agar. Live/dead staining was carried out and silver levels measured using atomic emission spectroscopy. 8 implants were inserted into each sheep (60 in total (n=5)). Grit blasted Titanium alloy (Gb) and Agluna treated grit blasted titanium alloy (Ag) at a silver concentration of 4-6 micrograms/cm2 were compared at 6 weeks. Gb implants, Ag (at 4-6micrograms/cm2), high dose Agluna implants with silver concentrations at 15-20micrograms/cm2 (HdAg) and a grit blasted anodised titanium alloy (Ano) were compared at 12 weeks. Pullout strength and bone-implant contact was quantified. Results. On Ti, Ano and Ag C surfaces the number of live fibroblasts was significantly greater than on Ag (non-conditioned) surfaces. Data from pull out tests at 6 weeks showed a lower but significant interfacial shear strength in the Ag group (310.4N) when compared with the Gb group (561.2N) (p=0.01). At 12 weeks, there were no significant differences between each of the 4 treatment groups. Histological analysis showed no significant differences in bone-implant contact between groups at 6 and 12 weeks. Discussion. The initial non-conditioned Agluna surface is bactericidal and cytotoxic but on conditioning, osteoblasts and fibroblasts attached and remained viable. The condition Agluna surface remains bactericidal. Silver incorporation at a concentration up to 20 micrograms/cm2 has no adverse toxic effect on osteointegration and the interfacial shear strength of implants. This coating has been used clinically in situations where the infection rate is high


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 3 - 3
1 Jan 2003
Sheehan E McKenna J Dowling D McCormack D Fitzpatrick J
Full Access

Metallic implants are used frequently in the operative repair of joints and fractures in orthopaedic surgery. Metal infection is a catastrophic complication of the surgery with patients loosing their newfound mobility and independence, associated morbidity and mortality is high. Orthopaedic implant infection is chronic and biofilm based. Present treatment focuses on removing the infective substratum and implant surgically as well as prolonged anti-microbial therapy. Biofilms are 500 times more resistant than planktonic strains of bacterial flora to antibiotics, and with evolving resistant strains this form of therapy is loosing ground. Silver coatings on polymers and nylon (catheters, heart valve cuffs, burn dressings) have shown inhibition of this biofilm formation in its adhesion stage. Our aim was to deposit effective, minute, biocompatible, anti-bacterial layers of silver on orthopaedic stainless steel K-wires. Combining magnetron sputtering with a neutral atom beam (Saddle Field) plasma source at 10. −4. mbar in argon gas at temperatures of 60°C, a silver coating of 99.9% purity was deposited onto stainless steel orthopaedic K-wires. Coating thickness measurements were obtained using glancing angle x-ray diffraction of glass slides coated adjacent to wires. Magnetron parameters were modified to produce varying thickness of silver. Adhesiveness was examined using Rockwell punch tests and tape tests. Silver leaching experiments were carried out in phosphate buffered saline at 37°C for 48hrs and using inductive coupled plasma spectrometry to assess leached silver ions. Surface microscopy visualised physical changes in the coatings. Biofilm adhesion was determined by exposing wires to Staphylococcus aureus ATCC 29213 -NCTC 12973 for 15 min to allow biofilm adhesion and initiation. Wires were then cultured for 24h at 37°C in RPMI. Subsequently wires were sonicated at 50Hz in ringer’s solution and gently vortexed to dislodge biofilm. Sonicate was plated by the log dilution method on blood agar plates. Bacterial colonies were then counted and changes expressed in log factors. Surface biofilms were visualised using scanning electron microscopy. Cytotoxicity was assessed using fibroblast cell cultures lines. K-wires were coated with 5 to 50 nm of silver by running the magnetron sputtering at low currents. These coatings showed excellent adhesive properties within the 48hr exposed with only 5% of silver leaching in buffered saline. The silver coated wires showed a log 3–4 fold reduction in biofilm formation as compared to control wires. The coatings showed no cytotoxic effects. Silver coating of medical implants has been shown in urological catheters to reduce biofilm infection. We have perfected a method of depositing thin layers of anti-bacterial silver onto stainless steel, which is both anti-infective and biocompatible. This coating could potentially add to the armourary of anti-infective agents in the elimination of infection related orthopaedic implant failure


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 63 - 63
1 Nov 2018
Kose N Köse A Bayrak C Sevencan A Akyürekli A Koparak T Korkusuz F Dogan A
Full Access

Long-term survival and favourable outcome of implant use are determined by bone-implant osseointegration and absence of infection near the implants. As with most diseases, prevention is the preferred approach. Silver ion doped calcium phosphate based ceramic coating (Silveron®) for implant coating has been shown previously to be a potent antimicrobial agent as indicated by in vitro testing. The present study reports on clinical experience using silver ion doped calcium phosphate based ceramic coated external fixator pins as surgical treatment in the management of chronic osteomyelitis and open fractures. Ten patients had external fixators: six for open fractures of ankle, three for chronic osteomyelitis of the femur, one for tibia pseudoarthrosis. The electrospray method was used for coating the external fixator pins with silver ion doped calcium phosphate-based ceramics. A radiofrequency energy source was used to sinter the coated pins. Microbiological, roentgenographic, toxic and biochemical analyzes of patients were carried out. Wound debridement, and subsequent wound care resulted in control of the infection in three chronic osteomyelitis and in healing of seven fractures after follow-up ranging from three to six months. In total 67 pins were used in 10 patients but only one pin was positive microbiologically in one patient. Collectively, these data clearly illustrate that the toxic effects of silver were not observed at the doses used. Silver ion doped calcium phosphate based ceramic coating (Silveron®) can be used to prevent infection associated with the implant


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 120 - 120
1 May 2016
Donati F Ziranu A Perisano C Spinelli S Di Giacomo G Maccauro G
Full Access

Foreword. Silver coatings, used in many surgical devices, have demonstrated good antimicrobial activity and low toxicity. Oncological musculoskeletal surgery have an high risk of infection, so in the last decades, silver coated mega-prostheses have been introduced and are becoming increasingly widespread. Material and methods. We performed a retrospective analysis of 158 cases of bone tumors, primary or metastatic, treated between 2002–2014 with wide margins resection and reconstruction with tumoral implants. The average age was 59 years (range 11–78 years), all patients were treated by the same surgeon, with antibiotic prophylaxis according to a standard protocol. In 58.5% of patients were implanted silver-coated prostheses, in the remaining part, standard tumor prosthesis. Patients were re-evaluated annually and were recorded complications, with particular attention to infectious diseases. Results. The mean follow-up was 39.5 months. 23.4% of patients died at a median time of 34.9 months after surgery. 18.4% develop complications that required a new surgery, in 12.6% of cases due to infectious problems. Patients treated with silver-coated implants developed early infection in 2.2% of cases against the 10.7% of the patients treated with standard tumor prosthesis. This different among the two groups was statistically significant, while the percentage of late infections, occurred from 6 months after surgery, was similar between groups. Assuming a reduction of antimicrobial silver activity in the time, it was carried out a microscopic analyses [Fig. 1] of silver-coated prostheses explanted 82 months and 27 months after surgery. It confirmed an important degradation of the coating surface with almost complete absence of silver. Silver blood level, taken in a sample of patients, at different time after surgery, always showed values well below the threshold of toxicity, and no patient has never shown any sign of local or general toxicity secondary to silver [Fig. 2]. Discussion. Our study demonstrates that tumor silver-coated implants have a rate of early infection significantly less than traditional implants, while there were no differences in the rate of late infections, as described also in the literature. This likely is related to wear of the silver coating, which occurs on average around 2 years after implantation. Conclusion. We recommend to use silver–coated prosthesis as primary implants for limb salvage surgery, in primary or metastatic bone tumors, considering the absence of signs of toxicity and the lower rate of early infection


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 62 - 62
1 May 2016
Colombo M Calori G Mazza E Mazzola S Minoli C
Full Access

Introduction. Various anti-infective agents can be added to the surface of orthopaedic implants to actively kill bacteria and prevent infection. Silver (Ag) is a commonly used agent in various anti-infective applications. Silver disrupts bacterial membranes and binds to bacterial DNA and to the sulfhydryl groups of metabolic enzymes in the bacterial electron transport chain, thus inactivating bacterial replication and key metabolic processes. Recently we are implanting Silver coated megaprosthesis for the treatment of post-traumatic septic non unions/bone defects and for infected hip or knee prosthesis revision. We treat these complications utilizing a two steps procedure: 1° step: devices removal, resection, debridment and antibiotic spacer implantation; 2° step: spacer removal and megaprosthesis implantation. This technique produce a reactive pseudosynovial membrane, well known in traumatology (Masquelet technique), following the Chamber Induction Technique principles. This chamber creates the perfect environment in which implant the prosthesis with safety. We are nowadays investigating if this membrane could optimize the Silver antimicrobical effects reducing the Silver ions dispersion and reducing toxicity on the human body. Objectives. The aim of this study is to perform a review of the literature about Silver coated implants in Orthopaedics and Trauma and to analyze our cases treated with this implants in order to measure their efficacy and the ion dispersion in urine and blood. Methods. We performed a literature review using the universally validated search engines in the biomedical field: PubMed / Medline, Google Scholar, Scopus, EMBASE. The keywords used were: “Silver”, “Silver coating”, “Silver surface”, “were crossed with “Prosthesis”, “Megaprosthesis”, “Infection”, “Sepsis”, “Revision”. We also analized all our patients treated with Silver coated implants measuring Silver dose in blood and urine before implantation, 1 day after implantation and then after 15 days, 3,6,12,24,36 months. Results. The search led to 468 items, of these were considered only article in English with full text available. We found 1 in vitro study, 1 animal study and 2 human studies. The animal study showed a reduction in periprosthetic infection from 47% to 7%, 1 human study in Oncology application of megaprosthesis showed a reduction of septic complications from 17,6% to 5,9%. Te other human study demonstrated that Silver surface implants don't have toxicity cause the blood level of silver Ions were only 56,4 parts per billion. The analysis of our casuistry is giving good results with low level of Silver in the blood and urine, lower concentrations are observed in patients treated with the 2 steps-CIT technique. Conclusions. The use of silver-coated prosthesis can reduce the infection rate in the medium-long term with no toxicity for the patients. Further studies with longer term follow-up periods and larger numbers of patients are warranted in order to confirm these encouraging results most of all in the patients treated with the 2 steps procedure in order to better understand the role of the membrane and of the Chamber Induction Technique in Silver ions dispersions


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_II | Pages 141 - 141
1 Feb 2003
Sheehan E McKenna J Dowling D McCormack D Marks P Fitzpatrick JM
Full Access

Metallic implants are used frequently in the operative repair of joints and fractures in orthopaedic surgery. Orthopaedic implant infection is chronic and biofilm based. Present treatment focuses on removing the infective substratum and implant surgically as well as prolonged anti-microbial therapy. Biofilms are up to 500 times more resistant than planktonic strains of bacterial flora to antibiotics. Silver coatings on polymers and nylon (catheters, heart valve cuffs, burn dressings) have shown inhibition of this biofilm formation in its adhesion stage. Our aim was to deposit effective, minute, antibacterial layers of silver on orthopaedic stainless steel and titanium K-wires and to investigate the effect of these coatings when exposed to Staphylococcus Aureus biofilms in an in vitro and in vivo environment. Combining magnetron sputtering with a neutral atom beam (Saddle Field) plasma source at 10. −4. mbar in argon gas at temperatures of 60°C, a silver coating of 99.9% purity was deposited onto stainless steel and titanium orthopaedic K-wires. Coating thickness measurements were obtained using glancing angle x-ray diffraction of glass slides coated adjacent to wires. Magnetron parameters were modified to produce varying thickness of silver. Adhesiveness was examined using Rockwell punch tests. Silver leaching experiments were carried out in phosphate buffered saline at 37°C for 48 hours and using inductive coupled plasma spectrometry to assess leached silver ions. Surface microscopy visualised physical changes in the coatings. Biofilm adhesion was determined by exposing wires to Staphylococcus Aureus ATCC 29213 – NCTC 12973 for 15 minutes to allow biofilm initiation and adhesion. Wires were then culturing for 24 hours at 37°C in RPMI. Subsequently, wires were sonicated at 50Hz in ringer’s solution and gently vortexed to dislodge biofilm. Sonicate was plated out by log dilution method on Columbia blood agar plates. Bacterial colonies were then counted and changes expressed in log factors. K-wires were coated with 1 to 50 nm of silver by running the magnetron sputtering at low currents. These coatings showed excellent adhesive properties within the 48 hours exposed with only 3.7% of silver leaching in buffered saline. The silver coated stainless steel wires showed a log 2.31 fold reduction in biofilm formation as compared to control wires (p< .001), Student t-test), the silver coated titanium wires showed a log reduction of 2.06, (p< .001, Student t-test). Animal studies demonstrated enormous difficulty in reproducing biofilm formation and showed a 0.49 log fold reduction in the titanium group when exposed to Staph Aureus (p< .01, Student t-test), the other groups showed no statistically significant reduction. We have perfected a method of depositing tiny layers of anti-bacterial silver onto stainless steel and titanium, which is anti-infective in vitro but not in vivo. Further studies involving other metal coatings such as platinum and copper are warranted


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 137 - 137
1 Mar 2010
Shimazaki T Ando Y Shigematsu M Noda I Miyamoto H Yonekura Y Sonohata M Mawatari M Hotokebuchi T
Full Access

Surgical site infection related to orthopaedic implants is one of the serious complications. In the previous works, we developed a novel thermal spraying technology combined silver with hydroxyapatite (HA) in order to resolve such problems, and reported the property and antibacterial effect of them in vitro. However, no previous reports have investigated in vivo. Therefore, we monitored serum silver level in rats to clarify in vivo kinetics of silver released from the coating. HA loaded with 3 wt % of silver oxide (HA-Ag) and plain HA powder were sprayed on surface of titanium disks (20 mm diameter × 1 mm thick) by the flame spraying, which is a kind of thermal spraying method with acetylene torch. All these test pieces were obtained from Japan Medical Materials Corporation (JMM, Osaka, Japan). Both samples were implanted singly into the back subcutaneous pockets of male Sprague-Dawley rats (150–200 g). Rats were housed individually and given ad libitum access to food and water. After 24 h, 48 h, 7 d, 14 d and 28 d, the rats were sacrificed, and then the blood was drawn from common iliac vein. All procedures were operated under anesthesia. These blood samples were spun down and serum silver levels were measured by an inductively coupled plasma mass spectrometry. The average serum silver level in HA-Ag group had increased to more than 40 ppb until 48 h after implantation, and then decreased rapidly to normal level. There were significant differences (p < 0.05) between HA-Ag and HA group, at each measurement period. This is the first report to elucidate the serum silver level in rats implanted HA-Ag coatings. To date, reported coating technologies have included direct-loading antibacterial agents or heavy metals including silver with prosthesis base. The combine technology HA with silver would be effective in not only antibacterial but also osteoconductive respect. Our experimental results highlight the following 2 features: the serum silver levels peaked relatively early, and the levels reduced immediately to normal level after the peak. Therefore, we speculate that the released silver would not be accumulated generally, which not contribute long-term toxicity, and the coating would be suitable for prevention of early surgical site infections. This study provides novel and important information on in vivo release- property for HA-Ag coating, and suggests this coating is effective against not late but rather early infection related to orthopaedic implants


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXX | Pages 9 - 9
1 Jul 2012
Potter R Grimer R Carter S Tillman R Abudu A Jeys L Unwin P
Full Access

Aim. To investigate the effectiveness of silver coated prostheses in preventing periprosthetic infection in a high-risk group. Methods. We have used silver coated prostheses in 48 endoprosthetic replacements in whom there would be a high expected risk of infection. Results. Between 2006 and 2009 48 patients had silver coated prostheses inserted; 19 primaries, 10 single-stage revisions, and 19 second-stage revisions. Of these, only one (2%) required removal following overwhelming coliform infection. There were four superficial wound infections in the primary group, none in the single-stage group, and 5 in the 2 stage group. Of these patients, one died of metastases, 7 settled with antibiotics ⊞/⊟ wound washout, and one patient is undergoing investigation. Discussion. These early results suggest that silver coating may not prevent infection but seems to help treatment of it by allowing control with simple measures (washout). The cost of the silver coating is about £300. It will be cost effective if it reduces the overall infection risk by 1%


The Bone & Joint Journal
Vol. 95-B, Issue 7 | Pages 988 - 992
1 Jul 2013
Glehr M Leithner A Friesenbichler J Goessler W Avian A Andreou D Maurer-Ertl W Windhager R Tunn P

The aims of this study were to evaluate the incidence of local argyria in patients with silver-coated megaprostheses and to identify a possible association between argyria and elevated levels of silver both locally and in the blood. Between 2004 and 2011, 32 megaprostheses with silver coatings were implanted in 20 female and 12 male patients following revision arthroplasty for infection or resection of a malignant tumour, and the levels of silver locally in drains and seromas and in the blood were determined. The mean age of the patients was 46 years (10 to 81); one patient died in the immediate post-operative period and was excluded. Seven patients (23%) developed local argyria after a median of 25.7 months (interquartile range 2 to 44.5). Patients with and without local argyria had comparable levels of silver in the blood and aspiration fluids. The length of the implant did not influence the development of local argyria. Patients with clinical evidence of local argyria had no neurological symptoms and no evidence of renal or hepatic failure. Thus, we conclude that the short-term surveillance of blood silver levels in these patients is not required. Cite this article: Bone Joint J 2013;95-B:988–92