Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 534 - 534
1 Sep 2012
Heinert G Preiss S Klauser W Kendoff D Sussmann P
Full Access

Introduction. Patellar tracking in total knee replacements has been extensively studied, but little is known about patellar tracking in isolated patellofemoral replacements. We compared patellar tracking and the position of the patellar groove in the natural knee, followed by implantation of the femoral component of a PFR (patella unresurfaced) and after implantation of the femoral & patellar component of the PFR. Methods. Computer navigation was used to track the patella in eight whole lower extremities of four cadavers in the natural knee, in the same knee with the femoral component of the PFR (PFR-P) and with the femoral and patellar component of the PFR (PFR+P, patella resurfaced) (Depuy Sigma PFR). The form and position of the trochlea in the natural knee and the patellar groove of the femoral component was also analysed. Values are means+/−SD, two tailed Student's t-test for paired samples. Results. With a PFR-P the patella had a slightly more lateral tilt (0.8+/−0.8° to 2.8+/−2.5° at 40–100° of flexion, p<0.05 vs. Nat), this was more pronounced with the PFR+P (2.0+/−0.7° to 4.9+/−1.8° at 20–90° flexion, p<0.05 vs. Nat., p<0.05 vs. PFR-P at 20–80° flexion). No differences in patella rotation were seen between the three groups. In the PFR-P group the patella tracked a little more medially compared to the natural knee (0.6+/− 0.7mm to 1.3+/−2.6mm, p<0.05 at 20°,80°,90° flexion). The difference was more pronounced after patella resurfacing (PFR+P) (2.1+/−2.0mm to 3.0+/−2.2mm, p<0.05 vs. Nat. at 10°–100°, p<0.05 vs. PFR-P from 10–100°). When analysed relative to the patellar groove of the trochlea/femoral component the patella in the natural knee tracked slightly lateral to the groove (2.0+/−1.7mm to 2.9+/−2.0mm at 50–100° p<0.05), so did the patella of PFR-P (2.0+/−2.3mm to 2.3+/−2.3mm at 60–90° flexion, p<0.05), whilst the PFR+P tracked right on the groove (0.6+/−3.7mm medially to 0.6+/−2.9mm laterally, p<0.05 vs Nat at 10–30° & 70–100°, p<0.05 vs. PFR-P at 10–100°). Distance from the patellatot the epicondylar axis was slightly larger in the PFR-P group (0.6+/− 0.7mm to 1.3+/−1.4mm, p<0.05 vs. Natu at 20,80 & 90°. This was more pronounced with patellar resurfacing (2.1+/−2.0 to 3.0+/−2.2mm, p<0.05 vs. Nat at 10–100°, p<0.05 vs. PFR-P at 20–100°) The patella groove on the natural knee and the implanted femoral component of the implanted PFR had the same radius, inclination relative to the femoral mechanical axis, antero-posterior position and medio-lateral orientation. As intended by the designers the groove of the patellar component extended about 13mm further superiorly and 0.5mm more inferiorly. Discussion. The patella groove on the femoral component of the PFR reproduces the natural trochlear anatomy well. Patella tracking in the PFR-P shows only minor differences compared to the natural knee. Resurfacing of the patella in the PFR+P group causes the patella to tilt a little more laterally and track a little more medially, the distance to the epicondylar axis is slightly larger but this allows the patella to engage better in the patellar groove of the femoral component


The Bone & Joint Journal
Vol. 98-B, Issue 2 | Pages 249 - 259
1 Feb 2016
Sabharwal S Carter AW Rashid A Darzi A Reilly P Gupte CM

Aims

The aims of this study were to estimate the cost of surgical treatment of fractures of the proximal humerus using a micro-costing methodology, contrast this cost with the national reimbursement tariff and establish the major determinants of cost.

Methods

A detailed inpatient treatment pathway was constructed using semi-structured interviews with 32 members of hospital staff. Its content validity was established through a Delphi panel evaluation. Costs were calculated using time-driven activity-based costing (TDABC) and sensitivity analysis was performed to evaluate the determinants of cost


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1269 - 1274
1 Sep 2013
Uppal HS Peterson BE Misfeldt ML Della Rocca GJ Volgas DA Murtha YM Stannard JP Choma TJ Crist BD

We hypothesised that cells obtained via a Reamer–Irrigator–Aspirator (RIA) system retain substantial osteogenic potential and are at least equivalent to graft harvested from the iliac crest. Graft was harvested using the RIA in 25 patients (mean age 37.6 years (18 to 68)) and from the iliac crest in 21 patients (mean age 44.6 years (24 to 78)), after which ≥ 1 g of bony particulate graft material was processed from each. Initial cell viability was assessed using Trypan blue exclusion, and initial fluorescence-activated cell sorting (FACS) analysis for cell lineage was performed. After culturing the cells, repeat FACS analysis for cell lineage was performed and enzyme-linked immunosorbent assay (ELISA) for osteocalcin, and Alizarin red staining to determine osteogenic potential. Cells obtained via RIA or from the iliac crest were viable and matured into mesenchymal stem cells, as shown by staining for the specific mesenchymal antigens CD90 and CD105. For samples from both RIA and the iliac crest there was a statistically significant increase in bone production (both p < 0.001), as demonstrated by osteocalcin production after induction.

Medullary autograft cells harvested using RIA are viable and osteogenic. Cell viability and osteogenic potential were similar between bone grafts obtained from both the RIA system and the iliac crest.

Cite this article: Bone Joint J 2013;95-B:1269–74.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 965 - 968
1 Jul 2005
Stannard JP Singhania AK Lopez-Ben RR Anderson ER Farris RC Volgas DA McGwin GR Alonso JE

We report the incidence and location of deep-vein thrombosis in 312 patients who had sustained high-energy, skeletal trauma. They were investigated using magnetic resonance venography and Duplex ultrasound.

Despite thromboprophylaxis, 36 (11.5%) developed venous thromboembolic disease with an incidence of 10% in those with non-pelvic trauma and 12.2% in the group with pelvic trauma. Of patients who developed deep-vein thrombosis, 13 of 27 in the pelvic group (48%) and only one of nine in the non-pelvic group (11%) had a definite pelvic deep-vein thrombosis. When compared with magnetic resonance venography, ultrasound had a false-negative rate of 77% in diagnosing pelvic deep-vein thrombosis. Its value in the pelvis was limited, although it was more accurate than magnetic resonance venography in diagnosing clots in the lower limbs. Additional screening may be needed to detect pelvic deep-vein thrombosis in patients with pelvic or acetabular fractures.