Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 155 - 155
1 Sep 2012
Elkinson I Giles JW Faber KJ Boons HW Ferreira LM Johnson JA Athwal GS
Full Access

Purpose

The remplissage procedure may be performed as an adjunct to Bankart repair to address an engaging Hill-Sachs defect. Clinically, it has been reported that the remplissage procedure improves joint stability but that it may also restrict shoulder range of motion. The purpose of this biomechanical study was to examine the effects of the remplissage procedure on shoulder motion and stability. We hypothesized that the remplissage procedure would improve stability and prevent engagement but may have a deleterious effect on motion.

Method

Eight cadaveric forequarters were mounted on a custom biomechanical testing apparatus which applied simulated loads independently to the rotator cuff muscles and to the anterior, middle and posterior deltoid. The testing conditions included: intact shoulder, Bankart defect, Bankart repair, 2 Hill-Sachs defects (15%, 30%) with and without remplissage. Joint range of motion and translation were recorded with an optical tracking system. Outcomes measured were internal-external rotation range of motion in adduction and 90 combined abduction, extension range of motion and stability, quantified in terms of joint stiffness and engagement, in abduction.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 345 - 345
1 Dec 2013
Argintar E Heckmann N Wang L Tibone J Lee T
Full Access

Background:. Individuals with large Hill-Sachs lesions may be prone to failure and reoccurrence following standard arthroscopic Bankart repair. Here, the Remplissage procedure may promote shoulder stability through infraspinatus capsulo-tenodesis directly into the lesion. Little biomechanicaldata about the Remplissage procedure on glenohumeral kinematics, stability, and range of motion (ROM) currently exists. Questions/purposes:. What are the biomechanical effects of Bankart and Remplissage repair for large Hill-Sachs lesions?. Methods:. Six cadaveric shoulders were tested using a custom shoulder testing system. ROM and glenohumeral translation with applied loads in anterior-posterior (AP) and superior-inferior (SI) directions were quantified at 0° and 60° gleno-humeral abduction. Six conditions were tested: intact, Bankart lesion, Bankart with 40% Hill-Sachs lesion, Bankart repair, Bankart repair with Remplissage, and Remplissage repair alone. Results:. Humeral external rotation (ER) and total range of motion (TR) increased significantly from intact after the creation of the Bankart lesion at both 0° abduction (ER +27.0°, TR +35.8°, p < 0.05) [Fig 1] and 60° abduction (ER +9.5°, TR +30.7°, p < 0.05) [Fig 2], but did not increase further with the addition of the Hill-Sachs lesion. The Bankart repair restored range of motion to intact values 0° abduction at addition of the Remplissage repair did not significantly alter range of motion from the Bankart repair alone. There were no significant changes in AP or SI translation between Bankart repair with and without Remplissage compared to the intact specimen. Conclusions:. The addition of the Remplissage procedure for treatment of large Hill-Sachs lesions had no statistically significant effect on ROM or translation for treatment for large Hill-Sachs lesions. Clinical Relevance: The Remplissage technique may be a suitable option for engaging Hill-Sachs lesions. Further clinical studies are warranted