Advertisement for orthosearch.org.uk
Results 1 - 15 of 15
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 133 - 133
1 Apr 2019
Taki N Mitsugi N Mochida Y Yukizawa Y Sasaki Y Takagawa S
Full Access

INTRODUCTION. Recently, short shaped stem becomes popular in total hip arthroplasty (THA). Advantages of the short stem are preserving femoral bone stock, thought to be less thigh pain, suitable for minimally invasive THA. However, bony reaction around the short stem has not been well known. The purpose of this study was to compare the two years difference of radiographic change around the standard tapered round stem with the shorter tapered round stem. MATERIALS AND METHODS. Evaluation was performed in 96 patients (100 joints) who underwent primary THA. Standard tapered round stem (Bicontact D stem) was used in 44 patients from January 2011 to May 2013. Shorter stem (Bicontact E stem) was used in 56 patients from May 2015 to March 2016. The proximal shapes of these two stems are almost the same curvature. The mean age at surgery was 64 years. The mean BMI at surgery was 24.0 kg/m. 2. Eighty-six patients had osteoarthrosis and 10 patients had osteonecrosis. Evaluation was performed 2 years after surgery with standard AP radiographs. The OrthoPilot imageless navigation system was used during surgery. Evaluation of the stem fixation, stress shielding, and cortical hypertrophy were carried out. RESULTS. There were no differences of patient characteristics between the standard D stem group and the shorter E stem group. All 100 stems showed bony stable fixation two years after surgery. No subsidence was observed in both groups. No clear zone was observed around the stems in both groups. Cortical hypertrophy was observed 19 patients (43.2%) with the standard D stem group and 13 patients (23.2%) with the shorter E stem group. The standard D stem group showed higher incidence of cortical hypertrophy. Stress shielding was observed 35 patients (80%) with the standard D stem group and 42 patients (75%) with the shorter E stem group. The number of grade 1 and grade 2 stress shielding cases were 13 and 22 with the standard D stem group and 10 and 32 with the shorter E stem group, respectively. There were no grade 3 stress shielding case in both groups. Regarding the incidence of stress shielding, there was no difference between the two groups. DISCUSSION. This study demonstrated that the shorter stem showed less incidence of cortical hypertrophy compared to the standard stem. With radiographic evaluation, both standard and shorter stem showed good fixation. The meaning of cortical hypertrophy, whether it is a good reaction for the femur or not, has not been clarified yet. Less bony reaction around the shorter stem may suggest the potential for better clinical performance of the shorter stem compare to the standard stem


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 41 - 41
1 Mar 2017
Taki N Mitsugi N Mochida Y Ota H Shinohara K Sasaki Y Ishigatsybo R
Full Access

INTRODUCTION

Recently, the short stem has become popular in total hip arthroplasty (THA). The advantages of the short stem are that it preserves femoral bone stock, possibly results in less thigh pain, and is suitable for minimally invasive THA. However, because of the short stem, malposition may happen during surgery. The purpose of this study was to compare the stem alignment, which was measured by CT, between the standard tapered round stem and the shorter tapered round stem.

MATERIALS AND METHODS

CT evaluation was performed in 28 patients (29 joints) who underwent primary THA. The standard tapered round stem (Bicontact D stem) was used in 13 patients. The shorter stem (Bicontact E stem) was used in 16 patients (17 joints). The proximal shapes of these two stems have almost the tame curvature. The mean age at surgery was 68 years. The mean BMI at surgery was 23.3 kg/m2. Eighteen patients had osteoarthrosis, 3 patients had osteonecrosis, and 1 patient had femoral neck fracture. All surgeries were performed in the supine position with the direct anterior approach. The OrthoPilot imageless navigation system was used during surgery. Evaluation of the stem antetorsion angle (AA), flexion angle (FA), and varus angle (VA) were carried out.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 400 - 400
1 Dec 2013
Meneghini M Lovro L Licini D
Full Access

Introduction:

Although cementless total hip arthroplasty (THA) is well accepted, the optimal femoral component design remains unknown. Among early complications, loosening and periprosthetic fracture persist and are related to implant design. The purpose of this study is to compare the anatomic fit and early subsidence of two different stem designs: a modern, short taper-wedge design and a traditional fit-and-fill design.

Methods:

A retrospective cohort study of 129 consecutive cementless THAs using two different femoral stems was performed. A modern taper-wedge stem was used in 65 hips and a traditional proximal fit-and-fill stem was used in 64 hips. Radiographic analysis was performed at preoperative, immediate postoperative and 1-month postoperative intervals. The radiographic parameters of bone morphology via the canal-flare index, implant subsidence at 1 month, sagittal alignment, and the “anatomic fit” metrics of canal fill and associated gaps were measured and recorded.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 17 - 17
1 Dec 2022
Kowalski E Dervin G Lamontagne M
Full Access

One in five patients remain unsatisfied due to ongoing pain and impaired mobility following total knee arthroplasty (TKA). It is important if surgeons can pre-operatively identify which patients may be at risk for poor outcomes after TKA. The purpose of this study was to determine if there is an association between pre-operative measures and post-operative outcomes in patients who underwent TKA. This study included 28 patients (female = 12 / male = 16, age = 63.6 ± 6.9, BMI = 29.9 ± 7.4 kg/m2) with knee osteoarthritis who were scheduled to undergo TKA. All surgeries were performed by the same surgeon (GD), and a subvastus approach was performed for all patients. Patients visited the gait lab within one-month of surgery and 12 months following surgery. At the gait lab, patients completed the knee injury and osteoarthritis outcome score (KOOS), a timed up and go (TUG), and walking task. Variables of interest included the five KOOS sub-scores (symptoms, pain, activities of daily living, sport & recreation, and quality of life), completion time for the TUG, walking speed, and peak knee biomechanics variables (flexion angle, abduction moment, power absorption). A Pearson's product-moment correlation was run to assess the relationship between pre-operative measures and post-operative outcomes in the TKA patients. Preliminary analyses showed the relationship to be linear with all variables normally distributed, as assessed by Shapiro-Wilk's test (p > .05), and there were no outliers. There were no statistically significant correlations between any of the pre-operative KOOS sub-scores and any of the post-operative biomechanical outcomes. Pre-operative TUG time had a statistically significant, moderate positive correlation with post-operative peak knee abduction moments [r(14) = .597, p < .001] and peak knee power absorption [r(14) = .498, p = .007], with pre-operative TUG time explaining 36% of the variability in peak knee abduction moment and 25% of the variability in peak knee power absorption. Pre-operative walking speed had a statistically significant, moderate negative correlation with post-operative peak knee abduction moments [r(14) = -.558, p = .002] and peak knee power absorption [r(14) = -.548, p = .003], with pre-operative walking speed explaining 31% of the variability in peak knee abduction moment and 30% of the variability in peak knee power absorption. Patient reported outcome measures (PROMs), such as the KOOS, do indicate the TKA is generally successful at relieving pain and show an overall improvement. However, their pre-operative values do not correlate with any biomechanical indicators of post-operative success, such as peak knee abduction moment and knee power. Shorter pre-operative TUG times and faster pre-operative walking speeds were correlated with improved post-operative biomechanical outcomes. These are simple tasks surgeons can implement into their clinics to evaluate their patients. Future research should expand these findings to a larger sample size and to determine if other factors, such as surgical approach or implant design, improves patient outcomes


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 272 - 272
1 Dec 2013
Connor E Boucher F Wuestemann T Crawford R
Full Access

Introduction. The Exeter cemented polished tapered stem design was introduced into clinical practice in the early 1970's. [i] Design and cement visco-elastic properties define clinical results [ii]; a recent study by Carrington et al. reported the Exeter stem has 100% survivorship at 7 years. [iii] Exeter stems with offsets 37.5–56 mm have length 150 mm (shoulder to tip). Shorter stems, lengths 95–125 mm, exist in offsets 30–35.5 mm. The Australian National Joint Replacement Registry recently published that at 7 years the shorter stems are performing as well as longer stems on the registry [iv]. Clinical observation indicates in some cases of shorter, narrower femora that fully seating a 150 mm stem's rasp in the canal can be difficult, which may affect procedural efficiency. This study investigates the comparative risk of rasp distal contact for the Exeter 150 mm stem or a 125 mm stem. Materials and Methods. Rasps for 37.5, 44, 50 mm offset, No.1, 150 mm length stems (Exeter, Stryker Orthopaedics, Mahwah NJ) were compared with shortened length models using SOMA™ (Stryker Orthopaedics Modeling and Analytics technology). 637 patients' CT scanned femora were filtered for appropriate offset and size by measuring femoral-head to femoral-axis distance and midsection cancellous bone width (AP view). These femora were analyzed for distal contact (rasp to cortices) for 150 mm and 125 mm models (Figure 1). The widths of the rasp's distal tip and the cancellous bone boundary were compared to assess contact for each femur in the AP and ML views; the rasp was aligned along an ideal axis and flexed in order to pass through the femoral neck (ML view only). Results. The sample size of appropriate patients totaled 238 femora. In the AP view, the rasp exhibited contact in 43 cases for a 150 mm stem but in 0 cases for a 125 mm stem; 95% of bones with contact were Champagne Fluted. In the ML view, rasp distal contact occurred in 52 femora for a 150 mm stem and in 1 femur for a 125 mm stem (Table 1). The difference was significant in both views with p < 0.001. Discussion. This study shows that a shortened stem design's rasp avoids distal contact. Shorter stem rasps resolved all cases where there was a risk of contact with a 150 mm rasp and reduced the likelihood of contact (one case compared to 52), AP and ML views respectively. These results indicate that shorter stems may address patients with champagne-fluted and/or excessively bowed femora, commonly found in the Asian population[v]. Contact avoidance may improve rasp seating height (AP view) and alignment with the femoral axis (ML view), thereby increasing procedural efficiency and producing an optimal cement mantle distally.[vi] The data shows that a total 29% of appropriate model patients would benefit from a shorter stem. Shorter cemented stems may effectively address the global population's needs in THR


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 38 - 38
1 Mar 2021
Tavakoli A Faber K Langohr G
Full Access

Total shoulder arthroplasty (TSA) is an effective treatment for end-stage glenohumeral arthritis. The use of high modulus uncemented stems causes stress shielding and induces bone resorption of up to 63% of patients following TSA. Shorter length stems with smaller overall dimensions have been studied to reduce stress shielding, however the effect of humeral short stem varus-valgus positioning on bone stress is not known. The purpose of this study was to quantify the effect of humeral short stem varus-valgus angulation on bone stresses after TSA. Three dimensional models of eight male cadaveric humeri (mean±SD age:68±6 years) were created from computed tomography data using MIMICS (Materialise, Belgium). Separate cortical and trabecular bone sections were created, and the resulting bone models were virtually reconstructed three times by an orthopaedic surgeon using an optimally sized short stem humeral implant (Exactech Preserve) that was placed directly in the center of the humeral canal (STD), as well as rotated varus (VAR) or valgus (VAL) until it was contacting the cortex. Bone was meshed using a custom technique which produced identical bone meshes permitting the direct element-to-element comparison of bone stress. Cortical bone was assigned an elastic modulus of 20 GPa and a Poisson's ratio of 0.3. Trabecular bone was assigned varying stiffness based on CT attenuation. A joint reaction force was then applied to the intact and reconstructed humeri representing 45˚ and 75˚ of abduction. Changes in bone stress, as well as the expected bone response based on change in strain energy density was then compared between the intact and reconstructed states for all implant positions. Both varus and valgus positioning of the humeral stem altered both the cortical and trabecular bone stresses from the intact states. Valgus positioning had the greatest negative effect in the lateral quadrant for both cortical and trabecular bone, producing greater stress shielding than both the standard and varus positioned implant. Overall, the varus and standard positions produced values that most closely mimicked the intact state. Surprisingly, valgus positioning produced large amounts of stress shielding in the lateral cortex at both 45˚ and 75˚ of abduction but resulted in a slight decrease in stress shielding in the medial quadrant directly beneath the humeral resection plane. This might have been a result of direct contact between the distal end of the implant and the medial cortex under loading which permitted load transfer, and therefore load-reduction of the lateral cortex during abduction. Conversely, when the implant was placed in the varus angulation, noticeable departures in stress shielding and changes in bones stress were not observed when compared to the optimal STD position. Interestingly, for the varus positioned implant, the deflection of the humerus under load eliminated the distal stem-cortex contact, hence preventing distal load transfer thus precluding the transfer of load


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 1 - 1
1 Feb 2021
Tavakoli A Faber K Langohr G
Full Access

Introduction. Total shoulder arthroplasty (TSA) is an effective treatment to restore shoulder function and alleviate pain in the case of glenohumeral arthritis [1]. Stress shielding, which occurs when bone stress is reduced due to the replacement of bone with a stiffer metallic implant, causes bone resorption of up to 9% of the humeral cortical thickness following TSA [2]. Shorter length stems and smaller overall geometries may reduce stress shielding [3], however the effect of humeral head backside contact with the resection plane has not yet been fully investigated on bone stress. Therefore, the purpose of this study was to quantify the effect of humeral head contact conditions on bone stresses following TSA. Methods. 3D models of eight male left cadaveric humeri (68±6 years) were generated from CT data using MIMICS. These were then virtually prepared for reconstruction by an orthopaedic surgeon to accept a short-stem humeral implant (Exactech Equinoxe® Preserve) that was optimally sized and placed centrally in the humeral canal. The humeral head was positioned in the inferior-medial position such that contact was achieved on the medial cortex, and no contact existed on the lateral cortex. Three different humeral head backside contact conditions were investigated (Figure 1); full backside contact (FULL), contact with only the inferior-medial half of the resection (INF), and contact with only the superior-lateral half of the resection (SUP). Cortical bone was assigned an elastic modulus of 20 GPa and a Poisson's ratio of 0.3. Trabecular bone was assigned varying stiffness based on CT attenuation [4]. A joint reaction force was then applied representing 45˚ and 75˚ of abduction [5]. Changes in bone stress, as well as the expected bone response based on change in strain energy density [6] was then compared between the intact and reconstructed states. Results. For cortical bone, the full backside contact altered bone stress by 28.9±5.5% compared to intact, which was significantly less than the superior (37.0±3.9%, P=0.022) and inferior (53.4±3.9%, P<0.001) backside contact conditions. Similar trends were observed for changes in trabecular bone stress relative to the intact state, where the full backside contact altered bone stress by 86.3±27.9% compared to intact, compared to the superior and inferior contact conditions, which altered bone stress by 115.2±45.0% (P=0.309) and 197.4±80.2% (P=0.024), respectively. In terms of expected bone response, both the superior and inferior contact resulted in an increase in bone volume with resorbing potential compared to the full contact (Figure 2). Discussion and Conclusions. The results of this study show that full humeral head backside contact with the humeral resection plane is preferable for short stem humeral TSA implants with the head in the inferior-medial position. As expected, the superior contact typically increased resorption potential in the medial quadrant due to the lack of load transfer, however interestingly the inferior contact increased resorption potential in both the lateral and medial quadrants. Analysis of implant micromotion showed that medial liftoff of the implant occurred, which resulted in a lack of load transfer in the most medial aspect of the resection plane. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 27 - 27
1 Aug 2020
Abdic S Athwal G Wittman T Walch G Raiss P
Full Access

The use of shorter humeral stems in reverse shoulder arthroplasty has been reported as safe and effective. Shorter stems are purported to be bone preserving, easy to revise, and have reduced surgical time. However, a frequent radiographic finding with the use of uncemented short stems is stress shielding. Smaller stem diameters reduce stress shielding, however, carry the risk of varus or valgus malalignment in the metadiaphyseal region of the proximal humerus. The aim of this retrospective radiographic study was to measure the true post-operative neck-shaft (N-S) angle of a curved short stem with a recommended implantation angle of 145°. True anteroposterior radiographs of patients who received RTSA using an Ascend Flex short stem at three specialized shoulder centres (London, ON, Canada, Lyon, France, Munich, Germany) were reviewed. Radiographs that showed the uncemented stem and humeral tray in orthogonal view without rotation were included. Sixteen patients with proximal humeral fractures or revision surgeries were excluded. This yielded a cohort of 124 implant cases for analysis (122 patients, 42 male, 80 female) at a mean age of 74 years (range, 48 – 91 years). The indications for RTSA were rotator cuff deficient shoulders (cuff tear arthropathy, massive cuff tears, osteoarthritis with cuff insufficiency) in 78 patients (63%), primary osteoarthritis in 41 (33%), and rheumatoid arthritis in 5 (4%). The humeral component longitudinal axis was measured in degrees and defined as neutral if the value fell within ±5° of the humeral axis. Angle values >5° and < 5 ° were defined as valgus and varus, respectively. The filling-ratio of the implant within the humeral shaft was measured at the level of the metaphysis (FRmet) and diaphysis (FRdia). Measurements were conducted by two independent examiners (SA and TW). To test for conformity of observers, the intraclass correlation coefficient (ICC) was calculated. The inter- and intra-observer reliability was excellent (ICC = 0.965, 95% confidence interval [CI], 0.911– 0.986). The average difference between the humeral shaft axis and the humeral component longitudinal axis was 3.8° ± 2.8° (range, 0.2° – 13.2°) corresponding to a true mean N-S angle of 149° ± 3° in valgus. Stem axis was neutral in 70% (n=90) of implants. Of the 34 malaligned implants, 82% (n=28) were in valgus (mean N-S angle 153° ± 2°) and 18% (n=6) in varus position (mean N-S angle 139° ± 1°). The average FRmet and FRdiawere 0.68 ± 0.11 and 0.72 ± 0.11, respectively. No association was found between stem diameter and filling ratios (FRmet, FRdia) or cortical contact with the stem (r = 0.39). Operative technique and implant design affect the ultimate positioning of the implant in the proximal humerus. This study has shown, that in uncemented short stem implants, neutral axial alignment was achieved in 70% of cases, while the majority of malaligned humeral components (86%) were implanted in valgus, corresponding to a greater than 145° neck shaft angle of the implant. It is important for surgeons to understand that axial malalignment of a short stem implant does influence the true neck shaft angle


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 9 - 9
1 Feb 2020
Vendittoli P Lavigne M Pellei K Desmeules F Masse V Fortier L
Full Access

INTRODUCTION. In recent years, there has been a shift toward outpatient and short-stay protocols for patients undergoing total hip arthroplasty (THA) and total knee arthroplasty (TKA). We developed a peri-operative THA and TKA short stay protocol following the Enhance Recovery After Surgery principles (ERAS), aiming at both optimizing patients’ outcomes and reducing the hospital length of stay. The objective of this study was to evaluate the implementation of our ERAS short-stay protocol. We hypothesized that our ERAS THA and TKA short-stay protocol would result in a lower complication rate, shorter hospital length of stay and reduced direct health care costs compared to our standard procedure. METHODS. We compared the complications rated according to Clavien-Dindo scale, hospital length of stay and costs of the episode of care between a prospective cohort of 120 ERAS short-stay THA or TKA and a matched historical control group of 150 THA or TKA. RESULTS. Significantly lower rate of Grade 1 and 2 complications in the ERAS short-stay group compared with the standard group (mean 0.8 vs 3.0, p<0.001). Postoperative complications that were experienced by significantly more patients in the control group included pain (67% vs 13%, p<0.001), nausea (42% vs 12%, p<0.001), vomiting (25% vs 0.9%, p<0.001), dizziness (15% vs 4%, p=0.006), headache (4% vs 0%, p=0.04), constipation (8% vs 0%, p=0.002), hypotension (26% vs 11%, p=0.003), anemia (8% vs 0%, p=0.002), oedema of the operated leg (9% vs 1%, p=0.005), persistent lameness (4% vs 0%, p=0.04), urinary retention (13% vs 4%, p=0.006) and anemia requiring blood or iron transfusion (8% vs 0%, p=0.002). No difference was found between the 2 groups for Grade 3, 4, or 5 complications. The mean hospital length of stay for the ERAS short-stay group decreased by 2.8 days for the THAs (0.1 vs 2.9 days, p bellow 0.001) and 3.9 days for the TKAs (1.0 vs 4.9 days, p<0.001). The mean estimated direct health care costs reduction with the ERAS short-stay protocol was 1489% per THA and 4206% per TKA. DISCUSSION AND CONCLUSION. Shorter hospitalization time after THA and TKA is associated with lower risk of nosocomial infections and adverse events related to reduced mobilization such as venous thromboembolism, pulmonary atelectasis, and constipation. In addition, it increases bed availability in a restricted environment and is very favorable economically for the care provider. Multiple strategies have been described to reduce hospital length of stay. One attractive option is to follow the ERAS principles to improve patient experience to a level where they will feel confident to leave for home earlier. Implementation of a ERAS short-stay protocol for patients undergoing THA or TKA at our institution resulted not only in reduced hospital length of stay, but also in improved patient care and reduced direct health care costs


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 141 - 141
1 Jan 2016
Yang C
Full Access

Total knee replacement is a standard procedure for the end-staged knee joints. The main concerns at the perioperative period are infection prophylaxis, pain control, and blood loss management. Several interventions are designed to decrease the blood loss during and after the operation of total knee arthroplasty. In the recent meta-analysis showed that early tourniquet release of the tourniquet for hemostasis increased the total measured blood loss with primary TKR about 228.7 ml. So, Intra-operative blood loss for hemostasis can be saved by not to release the tourniquet after implants fixation, irrigation, closure of the wound and the application of compression dressing. Our study showed that most of the post-operative blood loss was collected during the first few postoperative hours: 37% in the first 2 hours and 55% in the first 4 hours and 82.1% in the first 24 hours. So, clamping the drainage for the first 4 postoperative hours would reduce blood loss after TKA (518 v.s. 843 mL). The fall in hemoglobin and Hct are also of significant difference (1.64 vs. 2.09 for Hb; 5.18 vs.7.69 for Hct). Appropriate clamping for an optimal time may be the most economical and simple, and the benefits of clamping also appear to outweigh its potential risks. NO DRAIN at all is able to reduce the post-operative blood loss. Our study showed that the decrease of postoperative hemoglobin was significantly less than that in no-drain group (1.45±0.72 vs 1.8±0.91). Shorter hospital stay was achieved in the no-drain group (8.3 ± 2.6 vs 10.7±3.2 days). All patients achieved good range of motion (flexion: 0 to >90 degree)by the five days after operation and no prosthetic infection was noted during follow-up. Thus, the routine use of closed suction drains for elective minimal-invasive total knee arthroplasty is not recommended


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 54 - 54
1 Dec 2016
Hozack W
Full Access

Revision hip surgery is about simplification. As such, a single revision stem makes sense. The most important advantage of Tapered Conical Revision (TCR) stem is versatility - managing ALL levels of femoral bone loss (present before revision or created during revision). The surgeon and team quickly gain familiarity with the techniques and instruments for preparation and implantation and subsequently master its use for a variety of situations. This ability to use the stem in a variety of bone loss situations eliminates intraoperative shuffle (changes in the surgical plan resulting in more instruments being opened), as bone loss can be significantly underestimated preoperatively or may change intraoperatively. Furthermore, distal fixation can be obtained simply and reliably. Paprosky 1 femoral defects can be treated with a primary-type stem for the most part. All other femoral defects can be treated with a TCR stem. Fully porous coated stems also work for many revisions but why have two different revision stem choices available when the TCR stems work for ALL defects?. TCR stems can be modular or monolithic but there are common keys to success. First and foremost, proper exposure is essential to assess bone defects and to safely prepare the femur. An extended osteotomy is often useful. Reaming distally to prepare a cone for fixation of the conical stem is a critical requirement to prevent subsidence (true for all revision stems). Restoration of hip mechanics (offset, leg length and stability) is fundamental to the clinical result. TCR stems have instrumentation and techniques that ensure this happens, since all this occurs AFTER distal stability is achieved. Modular TCR versions have some advantages. The proximal body size and length can be adjusted AFTER stem insertion if the stem goes deeper than the trial. Any proximal/distal bone size mismatch can be accommodated. If the surgeon believes that proximal bone ingrowth is important to facilitate proximal bone remodeling, modular TCR stems can more easily accomplish this. Further, proximal bone contact and osseointegration will protect the modular junction from stress and possible risk of fracture. Monolithic TCR versions also have some advantages. Modular junction mechanical integrity cannot accommodate smaller bone sizes. Shorter stem lengths are not available in modular versions, and shorter TCR stems are an option in many revision cases. The possibility of modular junction corrosion is eliminated and fracture of the stem at that junction, of course, is not possible. The monolithic stem option is less expensive as well. Consider Modular TCR stems in your learning curve, if you feel proximal bone osseointegration is important and if proximal/distal size mismatch is present. Consider Monolithic TCR stems after your learning curve to reduce cost, when a short stem works, and if a small stem is needed. Both Modular and Monolithic stems can be used for ALL cases with equal quality of result


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 10 - 10
1 Jan 2016
Aki T Sugita T Takahashi A Miyatake N Itoi E
Full Access

Introduction. The popliteus tendon is a component of the posterolateral corner of the knee, which controls the external rotation of the tibia. In our clinical practice, the femoral footprint of the popliteus tendon is occasionally excised as the bone is resected during total knee arthroplasty (TKA). Although the excision of the popliteus tendon femoral footprint could result in excessive external rotation of the tibia and may have adverse effects on the long-term outcomes of TKA, little attention has been paid to the popliteus tendon femoral footprint during TKA. The purpose of the present study is to assess the frequency of the excision and its associated risk factors. Methods. One hundred eleven knees of 90 patients with varus knee osteoarthritis who underwent primary TKA were included in the present study. There were 13 males and 77 females, and their average age was 74 years. The NexGen knee replacement system (Zimmer, Warsaw, IN, USA) was used in all cases. The excision of the popliteus tendon femoral footprint was intraoperatively evaluated, and the patients were divided into three groups depending on the status of the femoral footprint, i.e., the preserved, partially excised, and completely excised groups. The thickness of the distal femoral osteotomy, femoral component size, and background data including height, body weight, gender, and age were compared among these groups. Analysis of variance followed by Student–Newman–Keuls test were used to compare the continuous values and ordinal scales. Gender was compared using Fisher's exact test and residual analysis. Statistical significance was set at p < 0.05. Results. The popliteus tendon femoral footprint was preserved in 48 knees (43.2%), partially excised in 45 knees (40.5%), and completely excised in 18 knees (16.2%). The mean patient height was 154.6, 150.1, and 148.7 cm in the preserved, partially excised, and completely excised groups, respectively, and these differences were statistically significant (p < 0.01). Femoral component size was significantly smaller in the partially and completely excised groups compared with that in the preserved group (p < 0.05). The preserved group included more male patients (p < 0.01). There were no significant differences in body weight, age, and thickness of the distal femoral osteotomy among the groups. Conclusion. The partial or complete excision of the popliteus tendon femoral footprint was observed in more than half of the evaluated knees. Shorter height, smaller femoral component size, and female sex were considered to be the possible risk factors for the excision of the popliteus tendon femoral footprint


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 78 - 78
1 May 2016
Tomaszewski P Eijkenboom J Berahmani S Janssen D Verdonschot N
Full Access

INTRODUCTION. Total hip arthroplasty (THA) is a very successful orthopaedic treatment with 15 years implant survival reaching 95%, but decreasing age and increasing life expectancy of THA patients ask for much longer lasting solutions. Shorter and more flexible cementless stems are of high interest as these allow to maintain maximum bone stock and reduce adverse long-term bone remodeling.1 However, decreasing stem length and reducing implant stiffness might compromise the initial stability by excessively increasing interfacial stresses. In general, a good balance between implant stability and reduced stress shielding must be provided to obtain durable THA reconstruction.2. This finite element (FE) study aimed to evaluate primary stability and bone remodeling of a new design of short hip implant with solid and U-shaped cross-section. MATERIALS AND METHODS. The long tapered Quadra-H stem and the short SMS implants (Medacta International, Castel San Pietro, Switzerland) were compared in this study (Figure 1). A FE model of a femur was based on calibrated CT data of an 81 year-old male (osteopenic bone quality). Both titanium alloy implants were assigned an elastic modulus of 105 GPa and the Poisson's ratios were set to 0.3. Initial stability simulations included the hip joint force and all muscle loads during a full cycle of normal walking as calculated in AnyBody software (Anybody Technology AS, Denmark), whereas the remodeling simulation used the peak loads from normal walking and stair climbing activities. Initial stability results are presented as micromotions on the implant surface with a threshold of 40 µm.3 Bone remodeling outcomes are represented in a form of simulated Dual X-ray Absorptiometry (DEXA) scans and the quantitative bone mineral density (BMD) changes in 7 periprosthetic zones. RESULTS. The U-shaped SMS implant showed slightly higher micromotions (2.7% surface area exceeding 40 µm) than the Quadra-H stem (0.2%), whereas micromotions of solid SMS were considerably higher (8.4%) (Figure 2). The largest micromotions were found on medial side of all implants. The smallest bone loss one year post-operatively was predicted around the U-shaped SMS implant. Proximal zones (1, 6 and 7) showed the largest bone loss with average of 9.9%, 11.8% and 12.8% for the U-shaped SMS, solid SMS and Quadra-H respectively (Figure 3). The bone remodeling prediction for the Quadra-H stem was in good agreement with clinical DEXA measurements (overall bone loss of 5.5% vs. 5.7). CONCLUSION. The U-shaped SMS implant is clearly superior to its solid version and has potential to provide comparable initial stability as the long Quadra-H stem and considerably better long-term bone stock preservation


Bone & Joint Open
Vol. 1, Issue 10 | Pages 663 - 668
21 Oct 2020
Clement ND Oussedik S Raza KI Patton RFL Smith K Deehan DJ

Aims

The primary aim was to assess the rate of patient deferral of elective orthopaedic surgery and whether this changed with time during the coronavirus disease 2019 (COVID-19) pandemic. The secondary aim was to explore the reasons why patients wanted to defer surgery and what measures/circumstances would enable them to go forward with surgery.

Methods

Patients were randomly selected from elective orthopaedic waiting lists at three centres in the UK in April, June, August, and September 2020 and were contacted by telephone. Patients were asked whether they wanted to proceed or defer surgery. Patients who wished to defer were asked seven questions relating to potential barriers to proceeding with surgery and were asked whether there were measures/circumstances that would allow them to go forward with surgery.


Bone & Joint Open
Vol. 1, Issue 4 | Pages 47 - 54
2 Apr 2020
Al-Mohrej OA Elshaer AK Al-Dakhil SS Sayed AI Aljohar S AlFattani AA Alhussainan TS

Introduction

Studies have addressed the issue of increasing prevalence of work-related musculoskeletal (MSK) pain among different occupations. However, contributing factors to MSK pain have not been fully investigated among orthopaedic surgeons. Thus, this study aimed to approximate the prevalence and predictors of MSK pain among Saudi orthopaedic surgeons working in Riyadh, Saudi Arabia.

Methods

A cross-sectional study using an electronic survey was conducted in Riyadh. The questionnaire was distributed through email among orthopaedic surgeons in Riyadh hospitals. Standardized Nordic questionnaires for the analysis of musculoskeletal symptoms were used. Descriptive measures for categorical and numerical variables were presented. Student’s t-test and Pearson’s χ2 test were used. The level of statistical significance was set at p ≤ 0.05.