Purpose. In patients with multiple trauma delayed fracture healing is often diagnosed, but the pathomechanisms are not well known yet. The purpose of the study is to evaluate the effect of a severe hemorrhagic
The effects of extracorporeal
A substantial body of evidence supports the use of extracorporeal
We aimed to determine whether extracorporeal
Extracorporeal shock-wave (ESW) treatment hasbeen shown to be effective in promoting the healing of fractures. We aimed to determine whether ESW could enhance the growth of bone-marrow osteoprogenitor cells. We applied ESW to the left femur of rats 10 mm above the knee at 0.16 mJ/mm2 in a range of between 250 and 2000 impulses. Bone-marrow cells were harvested after ESW for one day and subjected to assessment of colony-forming unit (CFU) granulocytes, monocytes, erythocytes, megakaryocytes (CFU-Mix), CFU-stromal cells (CFU-S) and CFU-osteoprogenitors (CFU-O). We found that the mean value for the CFU-O colonies after treatment with 500 impulses of ESW was 168.2 CFU-O/well ( Our findings suggest that optimal treatment with ESW could enhance rat bone-marrow stromal growth and differentiation towards osteoprogenitors presumably by induction of TGF-β1.
Introduction and Objective. Hemorrhagic
Introduction. The management of pathologic fractures (PF) following osteomyelitis (especially acute subtype) has not been widely investigated. This is challenging due to the infection-induced destructive process causing bone architecture defects. Therefore, this study aims to assess a stepwise treatment plan for the acute incidence of PF in long bone following pediatric acute Hematogenous osteomyelitis(AHO) (the most common mechanism in children). Method. This case series was conducted in a tertiary pediatric center. Patients with fracture incidence within the first 10 days after AHO diagnosis were included. Patients’ characteristics were retrospectively reviewed. Result. Nine patients (7 boys, involved bone: the femur(4), tibia(3), Radius(1), and Ulna(1)) were included, with a mean age of 52.56±66.18 months (7-216) and a follow-up time of 11.62±3.61 years (6.5-16 years). The etiology in all patients was hematological(Methicillin-resistant Staphylococcus aureus). Our stepwise treatment plan was as follows:. 1. Intravenous antibiotics until ESR<20, then oral to ESR<5. 2. Debridemnt surgery was performed if abscesses were detected. 3. Fracture type determined initial fixation: external fixation (4 patients, 2 unions) or casting (2 patients, both unions). 4. If the union was not obtained, internal fixation (with (2 patients) or without (2 patients) bone graft) was applied (all obtained union). 5. Circular external fixation was applied if the union was not obtained or leg length discrepancy occurred (1 case). A mean of 3.2 surgical procedures (1-6) was required to control the infection, and 1.4 surgical procedures (0-4) were required to obtain union. Except for one patient who died of septic
Menisci are crucial structures for knee homeostasis: they provide increase of congruence between the articular surfaces of the distal femur and tibial plateau, bear loading,
We undertook a study of the anti-tumour effects of hyperthermia, delivered via magnetite cationic liposomes (MCLs), on local tumours and lung metastases in a mouse model of osteosarcoma. MCLs were injected into subcutaneous osteosarcomas (LM8) and subjected to an alternating magnetic field which induced a heating effect in MCLs. A control group of mice with tumours received MCLs but were not exposed to an AMF. A further group of mice with tumours were exposed to an AMF but had not been treated with MCLs. The distribution of MCLs and local and lung metastases was evaluated histologically. The weight and volume of local tumours and the number of lung metastases were determined. Expression of heat
Meniscus has many important functions in the knee joint such as load bearing,
Introduction. Proteomic analysis has the ability to reveal both the different types and abundances of proteins in a sample. To date, proteomic analysis has received limited attention in the field of tendon research, with mainly ex vivo investigations being undertaken to characterize the tendon proteome. A significant development would be the ability to detect in vivo changes in the proteomic composition as this could have clearer and more direct understanding on the efficiency of therapies. It is well documented that sample preparation is one of the most crucial steps in obtaining high quality resolution of proteins in mass spectrometry. Biological samples can vary in complexity, and minimization of this through sample handling and cleaning can drastically improve the resolved peptide spectra. During this investigation, samples of microdialysis media from the peritendinous space of the Achilles tendon pre or post shockwave therapy were used to establish whether the in vivo identification and quantification of proteins was possible. Materials and Methods. Six microdialysis samples were obtained from human subjects before (controls) or after
Purpose. Collagen-rich structures of the knee are prone to damage through acute injury or chronic “wear and tear”. Collagen becomes more disorganised in degenerative tissue e.g. osteoarthritis. An alignment index (AI) used to analyse orientation distribution of collagen-rich structures is presented. Method. A healthy caprine knee was scanned in a Siemens Verio 3T Scanner. The caprine knee was rotated and scanned in nine directions to the main magnetic field B. 0. A 3D PD SPACE sequence with isotropic 1×1×1mm voxels (TR1300ms, TE13ms, FOV256mm,) was optimised to allow for a greater angle-sensitive contrast. For each collagen-rich voxel the orientation vector is computed using Szeverenyi and Bydder's method. Each orientation vector reflects the net effect of all the fibres comprised within a voxel. The assembly of all unit vectors represents the fibre orientation map. Alignment Index (AI) in any direction is defined as a ratio of the fraction of orientations within 20° (solid angle) centred in that direction to the same fraction in a random (flat) case. In addition, AI is normalised in such a way that AI=0 indicates isotropic collagen alignment. Increasing AI values indicate increasingly aligned structures: AI=1 indicates that all collagen fibres are orientated within the cone of 20° centred at the selected direction. AI = (nM - nRnd)/(nTotal - nRnd) if nM >= nRnd. AI = 0 if nM < nRnd. Where:. nM is a number of reconstructed orientations that are within a cone of 20° centred in selected direction. nRnd is a number of random orientations within a cone of 20° around selected direction. nTotal is a number of collagen reach voxels. By computing AI for a regular gridded orientation space we are able to visualise change of AI on a hemisphere facilitating understanding of the collagen fibre orientation distribution. Results. The patella tendon had an AI=0.6453. The Anterior Cruciate Ligament (ACL) had an AI=0.2732. The meniscus had an AI=0.1847. Discussion. The most aligned knee structure is the patella tendon where the collagen fibres align with the skeleton to transmit forces through bones and muscles. This structure had the AI closest to 1. The ACL had the second highest AI and is composed of two fibre bundles aligned diagonally across the knee. The meniscus acts as a
A large number of total hip arthroplasties (THA) are performed each year, of which 60 % use cementless femoral fixation. This means that the implant is press-fitted in the bone by hammer blows. The initial fixation is one of the most important factors for a long lasting fixation [Gheduzzi 2007]. It is not easy to obtain the point of optimal initial fixation, because excessively press-fitting the implant by the hammer blows can cause peak stresses resulting in femoral fracture. In order to reduce these peak stresses during reaming, IMT Integral Medizintechnik (Luzern, Switzerland) designed the Woodpecker, a pneumatic reaming device using a vibrating tool. This study explores the feasibility of using this Woodpecker for implant insertion and detection of optimal fixation by analyzing the vibrational response of the implant and Woodpecker. The press-fit of the implant is quantified by measuring the strain in the cortical bone surrounding the implant. An in vitro study is presented. Two replica femur models (Sawbones Europe AB, Malmo Sweden) were used in this study. One of the femur models was instrumented with three rectangular strain gauge rosettes (Micro-Measurements, Raleigh, USA). The rosettes were placed medially, posteriorly and anteriorly on the proximal femur. Five paired implant insertions were performed on both bone models, alternating between standard hammer blow insertions and using the Woodpecker. The vibrational response was measured during the insertion process, at the implant and Woodpecker side using two
For the treatment of irreparable meniscal injuries, we developed a novel multilayer meniscal scaffold, consisting of collagen, strontium and cellulose derived from Luffa Cylindirica; and we evaluated its effects on meniscal regeneration and arthritic changes in a rabbit partial meniscectomy model. The meniscus has a key role in
Background. Intervertebral disc cells exist in a challenging physiological environment. Disc degeneration occurs early in life implying that disc cells may no longer be able to maintain a functional tissue. We hypothesise that disc cells have a stress response different from most other cells because of the disc environment. We have compared the stress response of freshly isolated and cultured bovine nucleus pulposus (NP) cells with bovine dermal fibroblasts, representative of cells from a vascularised tissue. Methods. Freshly isolated and passaged bovine NP cells and dermal fibroblasts were cultured for 3 days then subjected to either thermal stress at 45°C for 1h followed by recovery times of 6, 24 and 48h or nutrient stress involving culture without serum for 6, 24 and 48 h. At each time point, cell number and viability were assessed and heat
Summary. Staphylococcus aureus isolates from Fracture fixation device related infections contained fewer isolates that form a strong biofilm in comparison with isolates from Prosthetic joint infections. Both orthopaedic implant related infection groups possessed fnbB and sdrE more frequently than the non-implant related infection groups. Introduction. One of the most common pathogen causing musculoskeletal infections is Staphylococcus aureus. The aim was to characterise S. aureus isolated from these infections and to look for differences between the isolates from orthopaedic implant related infections (OIRI) and those in non-implant related infections (NIRI). The OIRI are further differentiated in those associated with fracture fixation (FFI) devices and those found in prosthetic joint infections (PJI). Methods. Three-hundred and five S. aureus isolates were collected from different Swiss and French hospitals (FFI, n=112; PJI, n=105; NIRI, n=88). The cases of NIRI were composed of 27 osteomyelitis (OM), 23 diabetic foot infections (DFI), 27 soft tissue infections (STI) and 11 postoperative spinal infections (SI). Isolates were tested for their ability to form a biofilm. They were typed by agr (accessory gene regulator) group and genes coding for the 13 most relevant MSCRAMMs, Panton-Valentine leukocidin (PVL), PIA (polysaccharide intercellular adhesin), γ-haemolysin, the five most relevant Staphylococcal enterotoxins (SEA-SEE), exfoliative toxins A and B (ETA and ETB) and toxic
Introduction. Ischaemic preconditioning (IPC) is a phenomenon whereby a tissue is more tolerant to an insult if it is first subjected to short bursts of sublethal ischaemia and reperfusion. The potential of this powerful mechanism has been realised in many branches of medicine where there is an abundance of ongoing research. However, there has been a notable lack of development of the concept in Orthopaedic surgery. The routine use of tourniquet-controlled limb surgery and traumatic soft tissue damage are just two examples of where IPC could be utilised to beneficial effect in Orthopaedic surgery. Methods. We conducted a randomized controlled clinical trial looking at the role of a delayed remote IPC stimulus on a cohort of patients undergoing a total knee arthroplasty (TKA). We measured the effect of IPC by analysing gene expression in skeletal muscle samples from these patients. Specifically we looked at the expression of Heat
Intra-articular injections of local anaesthetics (LA), glucocorticoids (GC), or hyaluronic acid (HA) are used to treat osteoarthritis (OA). Contrast agents (CA) are needed to prove successful intra-articular injection or aspiration, or to visualize articular structures dynamically during fluoroscopy. Tranexamic acid (TA) is used to control haemostasis and prevent excessive intra-articular bleeding. Despite their common usage, little is known about the cytotoxicity of common drugs injected into joints. Thus, the aim of our study was to investigate the effects of LA, GC, HA, CA, and TA on the viability of primary human chondrocytes and tenocytes Human chondrocytes and tenocytes were cultured in a medium with three different drug dilutions (1:2; 1:10; 1:100). The following drugs were used to investigate cytotoxicity: lidocaine hydrochloride 1%; bupivacaine 0.5%; triamcinolone acetonide; dexamethasone 21-palmitate; TA; iodine contrast media; HA; and distilled water. Normal saline served as a control. After an incubation period of 24 hours, cell numbers and morphology were assessed.Objectives
Methods