Advertisement for orthosearch.org.uk
Results 1 - 20 of 178
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 55 - 55
2 May 2024
McCann C Ablett A Feng T Macaskill V Oliver W Keating J
Full Access

Subtrochanteric femoral fractures are a subset of hip fractures generally treated with cephalomedullary nail fixation\[1\]. Single lag screw devices are most commonly-used, but integrated dual screw constructs have become increasingly popular\[2,3\]. The aim of this study was to compare outcomes of fixation of subtrochanteric femoral fractures using a single lag screw (Gamma3 nail, GN) with a dual screw device (InterTAN nail, IN). The primary outcome was mechanical failure, defined as lag screw cut-out, back-out, nail breakage or peri-implant fracture.

Consecutive adult patients (18yrs) with subtrochanteric femoral fracture treated in a single centre were retrospectively identified using electronic records. Patients that underwent surgical fixation using either a long GN (2010–2017) or IN (2017–2022) were included. Medical records and radiographs were reviewed to identify complications of fixation. Cox regression analysis was used to determine the risk of mechanical failure and secondary outcomes by implant design. Multivariable regression models were used to identify predictors of mechanical failure.

The study included 622 patients, 354 in the GN group (median age 82yrs, 72% female) and 268 in the IN group (median age 82yrs, 69% female). The risk of any mechanical failure was increased two-fold in the GN group (HR 2.44 \[95%CI 1.13 to 5.26\]; _p=0.024_). Mechanical failure comprising screw cut-out (_p=0.032_), back-out (_p=0.032_) and nail breakage (_p=0.26_) was only observed in the GN group. Technical predictors of failure included varus >5° for cut-out (OR 19.98 \[2.06 to 193.88\]; _p=0.01_), TAD;25mm for back-out (8.96 \[1.36 to 58.86\]; p=0.022) and shortening 1cm for peri-implant fracture (7.81 \[2.92 to 20.91\]; _p=<0.001_).

Our results demonstrate that an intercalated screw construct is associated with a lower risk of mechanical failure compared with the a single lag screw device. Intercalated screw designs may reduce the risk of mechanical complications for patients with subtrochanteric femoral fractures.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1036 - 1044
1 Aug 2012
Penny JO Brixen K Varmarken JE Ovesen O Overgaard S

It is accepted that resurfacing hip replacement preserves the bone mineral density (BMD) of the femur better than total hip replacement (THR). However, no studies have investigated any possible difference on the acetabular side.

Between April 2007 and March 2009, 39 patients were randomised into two groups to receive either a resurfacing or a THR and were followed for two years. One patient’s resurfacing subsequently failed, leaving 19 patients in each group.

Resurfaced replacements maintained proximal femoral BMD and, compared with THR, had an increased bone mineral density in Gruen zones 2, 3, 6, and particularly zone 7, with a gain of 7.5% (95% confidence interval (CI) 2.6 to 12.5) compared with a loss of 14.6% (95% CI 7.6 to 21.6). Resurfacing replacements maintained the BMD of the medial femoral neck and increased that in the lateral zones between 12.8% (95% CI 4.3 to 21.4) and 25.9% (95% CI 7.1 to 44.6).

On the acetabular side, BMD was similar in every zone at each point in time. The mean BMD of all acetabular regions in the resurfaced group was reduced to 96.2% (95% CI 93.7 to 98.6) and for the total hip replacement group to 97.6% (95% CI 93.7 to 101.5) (p = 0.4863). A mean total loss of 3.7% (95% CI 1.0 to 6.5) and 4.9% (95% CI 0.8 to 9.0) of BMD was found above the acetabular component in W1 and 10.2% (95% CI 0.9 to 19.4) and 9.1% (95% CI 3.8 to 14.4) medial to the implant in W2 for resurfaced replacements and THRs respectively. Resurfacing resulted in a mean loss of BMD of 6.7% (95% CI 0.7 to 12.7) in W3 but the BMD inferior to the acetabular component was maintained in both groups.

These results suggest that the ability of a resurfacing hip replacement to preserve BMD only applies to the femoral side.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 35 - 35
2 May 2024
Robinson M Wong ML Cassidy R Bryce L Lamb J Diamond O Beverland D
Full Access

The significance of periprosthetic fractures about a total hip arthroplasty (THA) is becoming increasingly important. Recent studies have demonstrated post-operative periprosthetic fracture rates are higher amongst cemented polished taper slip (PTS) stem designs compared to collared cementless (CC) designs. However, in the National Joint Registry, the rate of intra-operative periprosthetic femoral fractures (IOPFF) with cementless implant systems remains higher (0.87% vs 0.42%. p <0.001) potentially leading to more post-operative complications. This study identifies the incidence of IOPFF, the fracture subtype and compares functional outcomes and revision rates of CC femoral implants with an IOPFF to CC stems and PTS stems without a fracture. 5376 consecutive CC stem THA, carried out through a posterior approach were reviewed for IOPFF. Each fracture was subdivided into calcar fracture, greater trochanter (GT) fracture or shaft fracture. 1:1:1 matched analysis was carried out to compare Oxford scores at one year. Matching criteria included; sex (exact), age (± 1 year), American Society of Anaesthesiologists (ASA) grade (exact), and date of surgery (± 6 months). Electronic records were used to review revision rates. Following review of the CC stems, 44 (0.8%) were identified as having an IOPFF. Of these 30 (0.6%) were calcar fractures, 11 (0.2%) GT fractures and 3 (0.06%) were shaft fractures. There were no shaft penetrations. Overall, no significant difference in Oxford scores at one year were observed when comparing the CC IOPFF, CC non-IOPFF and PTS groups. There were no CC stems revised for any reason with either a calcar fracture or trochanteric fracture within the period of 8 years follow-up. IOPFF do occur more frequently in cementless systems than cemented. The majority are calcar and GT fractures. These fractures, when identified and managed intra-operatively, do not have worse functional outcomes or revision rates compared to matched non-IOPFF cases


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 65 - 65
19 Aug 2024
Walter W Lin D Weinrauch P de Smet K Beaule P Young D Xu J Manktelow A
Full Access

Hip resurfacing arthroplasty (HRA) is a bone conserving alternative to total hip arthroplasty. We present the early 2-year clinical and radiographic follow-up of a novel ceramic-on-ceramic (CoC) HRA in an international multi-centric cohort. Patients undergoing HRA between September 2018 and January 2021 were prospectively included. Patient-reported outcome measures (PROMS) in the form of the Forgotten Joint Score (FJS), HOOS Jr, WOMAC, Oxford Hip Score (OHS) and UCLA Activity Score were collected preoperatively and at 1- and 2-years post-operation. Serial radiographs were assessed for migration, component alignment, evidence of osteolysis/loosening and heterotopic ossification formation. 200 patients were identified to have reached 2-year follow-up. Of these, 185 completed PROMS follow-up at 2 years. There was significant improvement in HOOS (p< 0.001) and OHS (p< 0.001) and FJS (p< 0.001) between the pre-operative and 2-year outcomes. Patients reported improved pain (p<0.001), function (p<0.001) and reduced stiffness (p<0.001) as measured by the WOMAC score. Patients had improved activity scores on the UCLA Active Score (P<0.001) with 53% reporting return to impact activity at 2 years. There was no osteolysis and the mean acetabular cup inclination angle was 41deg and the femoral component shaft angle was 137deg. No fractures were reported over but there was one sciatic nerve palsy with partial recovery. Two patients were revised; one at 3 months for pain due to a misdiagnosed back problem and another at 33 months for loosening of the acetabular component with delamination of the titanium ingrowth surface. CoC resurfacing at 2-years post-operation demonstrate promising results with satisfactory PROMS


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 54 - 54
23 Jun 2023
Shaath MK Yawman J Anderson T Avilucea F Langford J Munro M Haidukewych GJ
Full Access

Intertrochanteric fractures are common, accounting for nearly 30% of all fracture related admissions. Some have suggested that these fractures should be treated in community hospitals so as not to tax the resources of Level One trauma centers. Since many factors predictive of fixation failure are related to technical aspects of the surgery, the purpose of this study was to compare radiographic parameters after fixation comparing trauma fellowship trained surgeons to non-fellowship trained community surgeons to see if these fractures can be treated successfully in either setting. Using our hospital system's trauma database, we identified 100 consecutive patients treated with cephalomedullary nails by traumatologists, and 100 consecutive patients treated by community surgeons. Quality of reduction, neck shaft angle (NSA), tip-to apex distance (TAD) were compared. The mean TAD for the trauma group was 10mm compared to 21mm for the community group (p<0.001). The mean postoperative NSA for the trauma group was 133 degrees compared to 127 degrees for the community group (p<0.001). The mean difference in the NSA of the fractured side compared to the normal hip was 2.5 degrees of valgus in the trauma group compared to 5 degrees of varus for the community group (p<0.001). There were 93 good reductions in the trauma group compared to 19 in the community group (p<0.001). There were no poor reductions in the trauma group and 49 poor reductions in the community group (p<0.001). Fellowship trained traumatologists achieved significantly more accurate reductions and implant placement during cephalomedullary nailing of intertrochanteric hip fractures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 19 - 19
19 Aug 2024
Macheras G Kostakos T Tzefronis D
Full Access

Total hip arthroplasty (THA) for congenital hip dysplasia (CDH) presents a challenge. In high-grade CDH, key surgical targets include cup placement in the anatomical position and leg length equality. Lengthening of more than 4 cm is associated with sciatic nerve injury, therefore shortening osteotomies are necessary. We present our experience of different shortening osteotomies including advantages and disadvantages of each technique. 89 hips, in 61 pts (28 bilateral cases), for high CDH were performed by a single surgeon from 1997 to 2022. 67 patients were female and 22 were male. Age ranged from 38 to 68 yrs. In all patients 5–8cm of leg length discrepancy (LLD) was present, requiring shortening femoral osteotomy. 12 patients underwent sequential proximal femoral resection with trochanteric osteotomy, 46 subtrochanteric, 6 midshaft, and 25 distal femoral osteotomies with simultaneous valgus correction were performed. All acetabular prostheses were placed in the true anatomical position. We used uncemented high porosity cups. Patients were followed up for a minimum of 12 months. All osteotomies healed uneventfully except 3 non-unions of the greater trochanter in the proximal femur resection group. No femoral shaft fractures in proximally based osteotomies. No significant LLD compared to the unaffected or reconstructed side. 2 patients suffered 3 and 5 degrees malrotation of the femur in the oblique sub-trochanteric group. 3 patients suffered transient sciatic nerve palsies. Shortening femoral osteotomies in the treatment of DDH are necessary to avoid injury to the sciatic nerve. In our series, we found transverse subtrochanteric osteotomies to be the most technically efficient, versatile and predictable in their clinical outcome, due to the ability to correct rotation and preserve the metaphyseal bone integrity, allowing for better initial stem stability. Distal femoral osteotomies allowed for controllable correction of valgus knee deformity


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 53 - 53
23 Jun 2023
Schemitsch EH Nowak LL De Beer J Brink O Poolman R Mehta S Stengel D Bhandari M
Full Access

We aimed to use data from a randomized controlled trial (RCT) comparing the sliding hip screw vs. intramedullary nailing (IMN) for trochanteric fractures to examine complication rates between those managed with a short vs. long IMN. This is a secondary analysis using one arm of an RCT of patients ≥18 years with trochanteric fractures. We examined differences in fracture-related (femoral shaft fracture, implant failure, surgical site infection (SSI), nonunion, limb shortening, and pain) and medical (organ failure, respiratory distress, stroke, deep vein thrombosis [DVT] gastrointestinal upset, pneumonia, myocardial infarction, sepsis, or urinary tract infection) adverse events (AE), and readmission between short vs. long IMNs. We included 412 trochanteric fracture patients, 339 (82.2%) of whom received a short (170mm–200mm) nail, while 73 (17.7%) received a long (260mm–460 mm) nail. Patients in the long group were more likely to be admitted from home (vs. an institution), and have comorbidities, or more complex fracture types. Patients in the long group had higher rates of fracture-related AE (12.3%) vs. the short group (3.5%). Specifically, SSI (5.5% vs. 0.3%) and pain (2.7% vs. 0.0%) were significantly higher in the long group. Patients in the long group were also more likely to develop DVT (2.7% vs. 0.3%), and be readmitted to the hospital (28.8% vs. 20.7%). Following covariable adjustment, long nails remained associated with a higher odds of fracture-related AE (5.11, 1.96–13.33) compared to short nails. We found no association between the adjusted odds of readmission and nail length (1.00, 0.52–1.94). Our analyses revealed that trochanteric fracture patients managed with long IMN nails may have a higher odds of fracture-related AE compared to short nails. Future research is required to validate these findings with larger event rates, and further optimize IMN for trochanteric fracture patients


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 49 - 49
19 Aug 2024
Beverland D Wong ML Robinson M Cassidy R Lamb J Diamond O
Full Access

A: - determine the incidence of intraoperative periprosthetic femoral fracture (PFF). B: - determine the incidence of, and the reoperation rate for postoperative PFF. When using either CC or PTS femoral components. Retrospective review of a consecutive series of 11,018 THAs over a ten-year period. All PFFs were identified using regional radiograph archiving and electronic care systems. Of the 11,018 THAs 4,952 were CC and 6,066 were PTS. Between groups, age, sex, and BMI did not differ. A: - 55 (0.5%) had an intraoperative PFF. 44 CC and 11 PTS (p<0.001). 3 patients in each group had a femoral shaft fracture, remaining fractures were either the calcar (20 CC and 2 group) or the greater trochanter (11 CC and 6 PTS). B: - 91(0.8%) sustained a postoperative PFF. Of those 15 were managed conservatively, 15 were revised and 61 (80.3%) had an ORIF. The CC group had both a lower overall rate of postoperative PFFs (0.7% (36/4,952) vs 0.9% (55/6,066); p = 0.341), and a lower rate of return to theatre (0.4% (22/4,952) vs 0.9% (54/6,066); p = 0.005). 1.3% of male PTS (36/2,674) had a reoperation compared to 0.3% of male CC (7/2,121) (p<0.001). With regard to stem fracture there were none in the Corail group and 5 in the Exeter group. Of these 2 were sub trunnion and 3 were basal neck. A: - There were significantly more intraoperative PFFs with CC 44 (0.8%) than PTS 11 (0.2%). However, the majority of fractures were either of the calcar or greater trochanter with no impact on early recovery or one year Oxford scores. B: - Male PTS were five times more likely to have a reoperation for postoperative PFF. Females had the same incidence of reoperation with either component type. There were 5 stem fractures in the Exeter group and none in the Corail. These results represent robust estimates, which are likely to be more accurate than revision only studies typically generated from registry data


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 18 - 18
1 Nov 2021
Sedel L Bizot P Garcia-Cimbrelo E
Full Access

Fracture risks are the most common argument against the use of Ceramic on ceramic (CoC) hip implants. Question: is ceramic material at risk in case of severe local trauma?. Over a long period, we tried to identify patients with a CoC prosthesis (Ceraver Osteal°)who did sustain a trauma. This was conducted in three different institutions. Eleven patients were found: 9 males and 2 females aged 17 to 70 years at time of index surgery. Accident occurred 6 months to 15 years after index: one car accident, five motorcycle accident, five significant trauma after a fall, including one ski board accident. Consequences of these trauma were: six fractures of the acetabulum with socket loosening in 4 that needed revision, two femoral shaft fracture, one orifed and one stem exchanged, one traumatic hip dislocation associated to loosening of the socket revised at 10 years, and one traumatic loosening of the socket. Ten had no consequence on ceramic integrity. One experienced a fracture of the patella from a dashboard trauma, a liner shipping was discovered during socket revision 2 years later. This is the only case of possible relation between trauma and ceramic fracture. In a more recent longitudinal study on 1856 CoC prosthesis performed from 2010 to 2021, 29 severe traumas were identified with no consequence on Ceramic material. From this limited case study, it can be assumed that Pure Alumina Ceramic well designed and manufactured, will not break after a significant trauma


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 19 - 19
1 May 2019
Lamb J Matharu G van Duren B Redmond A Judge A West R Pandit H
Full Access

Introduction. Intraoperative periprosthetic femoral fractures (IOPFF) lead to reduced implant survival. A deeper understanding of predictors enables surgeons to modify techniques and patient selection to reduce the risk of IOPFF. The aim of this study was to estimate predictors of IOPFF and each anatomical subtype (calcar crack, trochanteric fracture, femoral shaft fracture) during primary THA. Methods. This retrospective cohort study included 793823 primary THAs between 2004 and 2016. Relative risks for patient, surgical and implant factors are estimated for any IOPFF fracture and for all anatomical subtypes of IOPFF. Results. Patient factors significantly increasing the risk of fracture were: female gender, American Association of Anaesthesiologists (ASA) grade 3 to 5, pre-operative diagnosis including: avascular necrosis of the hip (AVN), previous trauma, inflammatory disease, paediatric disease and previous infection. Overall risk of IOPFF associated with age was greatest in patients below 50 years and above 80 years. Risk of any fracture reduced with computer guided surgery (CGS) and in non-NHS hospitals. Non-posterior approach's increased the risk of shaft and trochanteric fracture only. Cementless implants only significantly increased the risk of calcar cracks and shaft fractures and not trochanteric fractures. Conclusions. Fracture risk increases in patients less than 50 and older than 80, females, ASA grade 3 to 5 and indications other than primary osteoarthritis. Large cumulative reduction in IOPFF risk may occur with use of cemented implants, posterior approach and CGS. IOPFF may be further reduced by future developments in cementless stem implantation and non-posterior approaches which reduce the intraoperative strain placed on the femora


The Bone & Joint Journal
Vol. 99-B, Issue 3 | Pages 310 - 316
1 Mar 2017
Hothi H Henckel J Shearing P Holme T Cerquiglini A Laura AD Atrey A Skinner J Hart A

Aims. The aim of this study was to compare the design of the generic OptiStem XTR femoral stem with the established Exeter femoral stem. Materials and Methods. We obtained five boxed, as manufactured, implants of both designs at random (ten in total). Two examiners were blinded to the implant design and independently measured the mass, volume, trunnion surface topography, trunnion roughness, trunnion cone angle, Caput-Collum-Diaphyseal (CCD) angle, femoral offset, stem length, neck length, and the width and roughness of the polished stem shaft using peer-reviewed methods. We then compared the stems using these parameters. Results. We found that the OptiStems were lighter (p < 0.001), had a rougher trunnion surface (p <  0.001) with a greater spacing and depth of the machined threads (p < 0.001), had greater trunnion cone angles (p = 0.007), and a smaller radius at the top of the trunnion (p = 0.007). There was no difference in stem volume (p = 0.643), CCD angle (p = 0.788), offset (p = 0.993), neck length (p = 0.344), stem length (p = 0.808), shaft width (p = 0.058 to 0.720) or roughness of the polished surface (p = 0.536). Conclusion. This preliminary investigation found that whilst there were similarities between the two designs, the generic OptiStem is different to the branded Exeter design. Cite this article: Bone Joint J 2017;99-B:310–16


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1199 - 1208
1 Oct 2019
Lamb JN Matharu GS Redmond A Judge A West RM Pandit HG

Aims. We compared implant and patient survival following intraoperative periprosthetic femoral fractures (IOPFFs) during primary total hip arthroplasty (THA) with matched controls. Patients and Methods. This retrospective cohort study compared 4831 hips with IOPFF and 48 154 propensity score matched primary THAs without IOPFF implanted between 2004 and 2016, which had been recorded on a national joint registry. Implant and patient survival rates were compared between groups using Cox regression. Results. Ten-year stem survival was worse in the IOPFF group (p < 0.001). Risk of revision for aseptic loosening increased 7.2-fold following shaft fracture and almost 2.8-fold after trochanteric fracture (p < 0.001). Risk of periprosthetic fracture of the femur revision increased 4.3-fold following calcar-crack and 3.6-fold after trochanteric fracture (p < 0.01). Risk of instability revision was 3.6-fold after trochanteric fracture and 2.4-fold after calcar crack (p < 0.001). Risk of 90-day mortality following IOPFF without revision was 1.7-fold and 4.0-fold after IOPFF with early revision surgery versus uncomplicated THA (p < 0.001). Conclusion. IOPFF increases risk of stem revision and mortality up to ten years following surgery. The risk of revision depends on IOPFF subtype and mortality risk increases with subsequent revision surgery. Surgeons should carefully diagnose and treat IOPFF to minimize fracture progression and implant failure. Cite this article: Bone Joint J 2019;101-B:1199–1208


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 32 - 32
1 Oct 2019
Matta J Delagramaticas D Tatka J
Full Access

Background. Total hip arthroplasty requires proper sizing and placing of implants to ensure excellent outcomes and reduce complications. Calculation of femoral offset is an important consideration for optimal reconstruction of the hip biomechanics. Femoral offset can be measured on plain films or with flouroscopy if the x-ray beam is perpendicular to the plane determined by the angle between the neck axis and femoral shaft axis. This distance is evident only with the femur in the correct degree of rotation. Though pre-operative templating for femoral component size and offset is a regular accepted practice, a consistent method for assessing correct femoral rotation on the AP x-ray view has not been established. Purpose/Hypthesis. The purpose of the current study was to establish and validate a method for identifying radiographic landmarks on the proximal femur that would reliably indicate that the femur was in the proper degree of rotation to represent the true offset from the head center to shaft center. Methods. Lead markers were placed on areas of the greater trochanter followed by xrays. Markers placed on locations on the anterior and posterior greater trochanter duplicated reliable radiographic lines. Proximal femurs were dissected to the bone and rotated about their long axis from neutral rotation, defined at the point when the anterior and posterior aspects of the greater trochanter were aligned radiographically. Radiographs were taken at 2 degree increments in both internal and external rotation until 10 degrees, then again at 30 degrees. A custom script was used to calculate the femoral offset at these rotations at these locations. Descriptive analysis was performed to assess the relationship between rotation angle and femoral offset. Results. The mean femoral offset was observed to be 38.21 mm (SD 4.93, median 37.82, range 30.52–46.27). The mean rotation of max offset was −3.6° (SD 5.6, median −6, range −10 to +8). The average underestimation error (the difference between calculated offset at neutral rotation and observed maximum femoral offset) was 0.92 mm (median 0.74, range 0 to 2.07 mm). Conclusion. Alignment of the radiographic lines created by the anterior and posterior aspects of the greater trochanter is a reliable and accurate rotational positioning method for measuring femoral offset when using plain films or fluoroscopy. It is a feasible method that can be applied preoperatively and/or intraoperatively to optimize accuracy of femoral offset for THA procedures. For any tables or figures, please contact the authors directly


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 496 - 503
1 May 2023
Mills ES Talehakimi A Urness M Wang JC Piple AS Chung BC Tezuka T Heckmann ND

Aims

It has been well documented in the arthroplasty literature that lumbar degenerative disc disease (DDD) contributes to abnormal spinopelvic motion. However, the relationship between the severity or pattern of hip osteoarthritis (OA) as measured on an anteroposterior (AP) pelvic view and spinopelvic biomechanics has not been well investigated. Therefore, the aim of the study is to examine the association between the severity and pattern of hip OA and spinopelvic motion.

Methods

A retrospective chart review was conducted to identify patients undergoing primary total hip arthroplasty (THA). Plain AP pelvic radiographs were reviewed to document the morphological characteristic of osteoarthritic hips. Lateral spine-pelvis-hip sitting and standing plain radiographs were used to measure sacral slope (SS) and pelvic femoral angle (PFA) in each position. Lumbar disc spaces were measured to determine the presence of DDD. The difference between sitting and standing SS and PFA were calculated to quantify spinopelvic motion (ΔSS) and hip motion (ΔPFA), respectively. Univariate analysis and Pearson correlation were used to identify morphological hip characteristics associated with changes in spinopelvic motion.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 123 - 131
12 Feb 2024
Chen B Duckworth AD Farrow L Xu YJ Clement ND

Aims

This study aimed to determine whether lateral femoral wall thickness (LWT) < 20.5 mm was associated with increased revision risk of intertrochanteric fracture (ITF) of the hip following sliding hip screw (SHS) fixation when the medial calcar was intact. Additionally, the study assessed the association between LWT and patient mortality.

Methods

This retrospective study included ITF patients aged 50 years and over treated with SHS fixation between 2019 and 2021 at a major trauma centre. Demographic information, fracture type, delirium status, American Society of Anesthesiologists grade, and length of stay were collected. LWT and tip apex distance were measured. Revision surgery and mortality were recorded at a mean follow-up of 19.5 months (1.6 to 48). Cox regression was performed to evaluate independent risk factors associated with revision surgery and mortality.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 294 - 305
17 Jun 2024
Yang P He W Yang W Jiang L Lin T Sun W Zhang Q Bai X Sun W Guo D

Aims

In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method.

Methods

We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_5 | Pages 38 - 38
1 Jul 2020
Govaers K Philips T Vandekelft A
Full Access

We report on a cadaveric study and early experience using patient specific drill guides to prevent cortex perforations and reduce the need for a trochanteric osteotomy in revision THA. Mimic software (Materialise) was used for 3D analysis of the cement mantle and cement plug. Based on the CT findings a Cannulated drill guide with the shape of the femoral stem was printed in medical graded nylon intraoperative findings and complications were recorded on videotape using a standard 5mm laparoscope for medullary inspection. Surgical Technique was to attain a pre-operative CT scan with MARS protocol of the proximal femur to evaluate the femoral stem positioning, the 3D anatomy of the cement mantle, the length of the cement plug and the quality of the surrounding bone. Subsequent a 3D printing of patient specific cannulated drill guide with the shape of the removed femoral component but an eccentric cannulation was made. Endoscopic inspection was performed of the inside of the cement mantle, then insertion of the autoclaved cannulated drill guide in the existing cement mantle. After perforation of the distal plug through the PSI drill guide using either a long drill or an ultrasound plug perforation tool (Zimmer Biomet, Warsaw) the excessive cement was removed with standard available flexible femoral shaft reamers (Zimmer Biomet). Further laproscopic examination of the femoral canal performed to verify completeness of the cement removal. Results. CT scans with 3D reconstruction of the existing cement mantle is possible using Modern CT with MARS protocols. After the training on sawbones and cadaveric bones a predictable plug perforation was obtained in all clinical cases. There were no intraoperative cortex perforations and no intraoperative femoral fractures. Conclusion. CT scan analysis of femoral cement mantles together with patient specific drill guides are promising tools to reduce the risk of femoral perforation in revision total hip arthroplasty


Bone & Joint Open
Vol. 3, Issue 10 | Pages 795 - 803
12 Oct 2022
Liechti EF Attinger MC Hecker A Kuonen K Michel A Klenke FM

Aims

Traditionally, total hip arthroplasty (THA) templating has been performed on anteroposterior (AP) pelvis radiographs. Recently, additional AP hip radiographs have been recommended for accurate measurement of the femoral offset (FO). To verify this claim, this study aimed to establish quantitative data of the measurement error of the FO in relation to leg position and X-ray source position using a newly developed geometric model and clinical data.

Methods

We analyzed the FOs measured on AP hip and pelvis radiographs in a prospective consecutive series of 55 patients undergoing unilateral primary THA for hip osteoarthritis. To determine sample size, a power analysis was performed. Patients’ position and X-ray beam setting followed a standardized protocol to achieve reproducible projections. All images were calibrated with the KingMark calibration system. In addition, a geometric model was created to evaluate both the effects of leg position (rotation and abduction/adduction) and the effects of X-ray source position on FO measurement.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 72 - 72
1 Jan 2018
O'Connor J Hill J Beverland D Dunne N Lennon A
Full Access

This study aimed to assess the effect of flexion and external rotation on measurement of femoral offset (FO), greater trochanter to femoral head centre (GT-FHC) distance, and neck shaft angle (NSA). Three-dimensional femoral shapes (n=100) were generated by statistical shape modelling from 47 CT-segmented right femora. Combined rotations in the range of 0–50° external and 0–50° flexion (in 10° increments) were applied to each femur after they were neutralised (defined as neck and proximal shaft axis parallel with detector plane). Each shape was projected to create 2D images representing radiographs of the proximal femora. As already known, external rotation resulted in a significant error in measuring FO but flexion alone had no impact. Individually, neither flexion nor external rotation had any impact on GT-FHC but, for example, 30° of flexion combined with 50°of external rotation resulted in an 18.6mm change in height. NSA averaged 125° in neutral with external rotation resulting in a moderate increase and flexion on its own a moderate decrease. However, 50° degrees of both produced an almost 30 degree increase in NSA. In conclusion, although the relationship between external rotation and FO is appreciated, the impact of flexion with external rotation is not. This combination results in apparent reduced FO, a high femoral head centre and an increased NSA. Femoral components with NSAs of 130° or 135° may historically have been based on X-ray misinterpretation. This work demonstrates that 2D to 3D reconstruction of the proximal femur in pre-op planning is a challenge


The Bone & Joint Journal
Vol. 105-B, Issue 10 | Pages 1045 - 1051
1 Oct 2023
Turgeon TR Righolt CH Burnell CD Gascoyne TC Hedden DR Bohm ER

Aims

The primary aim of this trial was to compare the subsidence of two similar hydroxyapatite-coated titanium femoral components from different manufacturers. Secondary aims were to compare rotational migration (anteversion/retroversion and varus/valgus tilt) and patient-reported outcome measures between both femoral components.

Methods

Patients were randomized to receive one of the two femoral components (Avenir or Corail) during their primary total hip arthroplasty between August 2018 and September 2020. Radiostereometric analysis examinations at six, 12, and 24 months were used to assess the migration of each implanted femoral component compared to a baseline assessment. Patient-reported outcome measures were also recorded for these same timepoints. Overall, 50 patients were enrolled (62% male (n = 31), with a mean age of 65.7 years (SD 7.3), and mean BMI of 30.2 kg/m2 (SD 5.2)).