Summary Statement. Bio-impedance analysis (BIA) provides a convenient method for the estimation of whole body and segmental measurement of skeletal muscle mass (SMM). BIA-measured SMM parameters may be effectively used for the normalisation of muscle strength and removing body-size dependence. Introduction. Despite an increasing interest in using bio-impedance analysis (BIA) for the estimation of segmental skeletal muscle mass (SMM); existing data is sparse. On the other hand, there is a need for better understanding of the influence of SMM on gender-related differences in muscle strength. Using BIA technique, this study aimed to measure the SMM, determine its correlation with muscle strength, and examine its relation with gender-related differences in muscle strength. Patients and Methods.
Adrenomedullin is a peptide hormone that has attracted attention with its proliferative and anti-apoptotic effects on osteoblasts in recent years. We investigated the effect of adrenomedullin on healing of the segmental bone defect in a rat model. 36 Wistar rats were randomly divided in six groups based on follow-up periods and administered dose of adrenomedullin hormone. In each group, a 2 mm bone defect was created at the diaphysis of radius, bilaterally. NaCl solution was administered to sham groups three times a week for 4 and 8 weeks, intraperitoneally. Adrenomedullin was administered to study groups three times a week; 15 µg-4 weeks, 15 µg-8 weeks, 30 µg-4 weeks and 30 µg-8 weeks, respectively. After euthanasia, the segmental defects were evaluated by histomorphometric (new bone area (NBA)) and micro-tomographic (bone volume (BV), bone surface (BS), bone mineral density (BMD)) analysis. Although 4 and 8 weeks 15 μg administered study groups had higher NBA values than the other study and control groups, histomorphometric analysis did not reveal any statistical difference between the control and study groups in terms of new bone area (p > 0.05). In micro-tomographic analysis, BV was higher in 15 μg – 4 weeks group than 30 μg – 4 weeks group (296.9 vs 208.5, p = 0.003) and BS was lower in 30 μg – 4 weeks than 4 week - control group (695.5 vs 1334.7, p = 0.005) but in overall, no significant difference was found between the control and study groups (p > 0.05). Despite these minor differences in histomorphometric and micro-tomographic criteria indicating new bone formation, BMD values of 15 µg-4 and −8 weeks study groups showed significant increase comparing with the control group (p = 0.04, p = 0.001, respectively). Adrenomedullin seemed to have a positive effect on BMD at a certain dose (15 µg) but it alone is not considered sufficient for healing of the defect with new bone formation. Further studies are needed to assess its effects on bone tissue trauma. This study was funded by Hacettepe University Scientific Research Projects Coordination Unit
Bone is a tissue which continually regenerates and also having the ability to heal after injuries however, healing of large defects requires intensive surgical treatment. Bioactive glasses are unique materials that can be utilized in both bone and skin regeneration and repair. They are degradable in physiological fluids and have osteoconductive, osteoinductive and osteostimulative properties. Osteoinductive growth factors such as Bone Morphogenetic Proteins (BMP), Vascular Endothelial Growth Factor (VEGF), Epidermal Growth Factor (EGF), Transforming Growth Factor (TGF) are well known to stimulate new bone formation and regeneration. Unfortunately, the synthesis of these factors is not cost- effective and, the broad application of growth factors is limited by their poor stability in the scaffolds. Instead, it is wise to incorporate osteoinductive nanomaterials such as graphene nanoplatelets into the structures of synthetic scaffolds. In this study, borate-based 13-93B3 bioactive glass scaffolds were prepared by polymer foam replication method and they were coated with graphene-containing poly (ε-caprolactone) layer to support the bone repair and regeneration. Effects of graphene concentration (1, 3, 5, 10 wt%) on the healing of rat segmental femur defects were investigated in vivo using male Sprague–Dawley rats. Fabricated porous bioactive glass scaffolds were coated by graphene- containing polycaprolactone solution using dip coating method. The prepared 0, 1, 3, 5 and 10 wt% graphene nanoparticle-containing PCL-coated composite scaffolds were designated as BG, 1G-P-BG, 3G-P-BG, 5G-P-BG and 10G-P-BG, for each group (n: 4) respectively. Histopathological and immunohistochemical (bone morphogenetic protein, BMP-2; smooth muscle actin, SMA and alkaline phosphatase, ALP) examinations were made after 4 and 8 weeks of implantation.Introduction and Objective
Materials and Methods
Tissue engineering strategies to heal critical-size bone defects through direct bone formation are limited by incomplete integration of grafts with host bone and incomplete vascularisation. An alternative strategy is the use of cartilage grafts that undergo endochondral ossification. Endochondral cartilages stimulate angiogenesis and are remodeled into bone, but are naturally found in only small quantities. We sought to develop engineered endochondral cartilage grafts using human osteoarthritic (OA) articular chondrocytes. Study approval was obtained from our human and animal ethics review committees. Human OA cartilage was obtained from discarded tissues from total knee replacements. Scaffold-free engineered grafts were generated by pelleting primary or passaged chondrocytes, followed by culture with transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein 4. Samples were transplanted into immunocompromised mice either subcutaneously or into critical-size tibial defects. Grafts derived from passaged chondrocytes from either of two patients (64 year old and 68 year old men) where implanted into tibial defects in five mice. Bone formation was assessed with histology after four weeks of implantation.Background
Methods
Growth-guidance constructs are an alternative to growing rods for the surgical treatment of early onset scoliosis (EOS). In growth-guidance systems, free-sliding anchors preserve longitudinal spinal growth, thereby eliminating the need for surgical lengthening procedures. Non-segmental constructs containing ultra-high molecular weight polyethylene (UHMWPE) sublaminar wires have been proposed as an improvement to the traditional Luque trolley. In such a construct, UHMWPE sublaminar wires, secured by means of a knot, serve as sliding anchors at the proximal and distal ends of a construct, while pedicle screws at the apex prevent rod migration and enable curve derotation. Ideally, a construct with the optimal UHMWPE sublaminar wire density, offering the best balance between providing adequate spinal fixation and minimizing surgical exposure, is designed preoperatively for each individual patient. In a previous study, we developed a parametric finite element (FE) model that potentially enables preoperative patient-specific planning of this type of spinal surgery. The objective of this study is to investigate if this model can capture the decrease in range of motion (ROM) after spinal fixation as measured in an experimental study. In a previous INTRODUCTION
MATERIALS AND METHODS
Stand-alone anterior lumbar interbody fusion (ALIF) provides the opportunity to avoid supplemental posterior fixation. This may reduce morbidity and complication rate, which is of special interest in patients with reduced bone mineral density (BMD). This study aims to assess immediate biomechanical stability and radiographic outcome of a stand-alone ALIF device with integrated screws in specimens of low BMD. Eight human cadaveric spines (L4-sacrum) were instrumented with SynFix-LR™ (DePuy Synthes) at L5/S1. Quantitative computed tomography was used to measure BMD of L5 in AMIRA. Threshold values proposed by the American Society of Radiology 80 and 120 mg CaHa/mL were used to differentiate between Osteoporosis, Osteopenia, and normal BMD.
Background. The objective was to evaluate the benefit that could be obtained in terms of pain and efficacy with processed segmental allografts on 20 patients in meniscal repair treatment. Methods.
Obesity decreases patellar tendon stiffness in females but not males Introduction Patellar tendon (PT) injuries are frequent due to excessive mechanical loading during strenuous physical activity. PT injury incidence is higher in females and obese individuals. The reason behind higher tendon injury incidence in females and obese individuals might be structural changes in tendons such as stiffness or elasticity. Tendon stiffness can recently be quantified using shear wave elastography (SWE). We aimed to examine the stiffness of PT in healthy sedentary participants using this new technology. This prospective study was carried out with 58 (34 female, 24 male) healthy sedentary participants between the ages of 18–44 years (27.5±7.7 years). Body mass and body fat percentage were measured with the Bioelectrical Impedance method using Tanita BC-418 MA
Introduction. Mesenchymal stem cells (MSCs) are identified by having the ability to differentiate into various tissues and typically used to generate bone tissue by a process of resembling intramembranous ossification, namely by direct osteoblastic differentiation. However, most bones develop by endochondral ossification, namely via remodeling of hypertrophic cartilaginous templates. To date, reconstruction of bone defects by endochondral ossification using mesenchymal stem cell-derived chondrocytes (MSC-DCs) have not been reported. The purpose of this study was to evaluate the effects of the transplantation of MSC-DCs on bone healing in segmental defects in rat femurs. Methods.
Summary. Pyogenic spondylodiscitis is an uncommon but severe spinal infection. In majority of cases treatment is based on intravenous antibiotics and rigid brace immobilization. Posterior percutaneous spinal instrumentation is a safe alternative procedure in relieving pain, preventing deformity and neurological compromise. Introduction. Pyogenic spondylodiscitis (PS) is an uncommon but severe spinal infection. Patients affected by a non-complicated PS and treatment is based on intravenous antibiotics and rigid brace immobilization with a thoracolumbosacral orthosis (TLSO) suffices in most cases in relieving pain, preventing deformity and neurological compromise. Since January 2010 we started offering patients percutaneous posterior screw-rod instrumentation as alternative approach to TLSO immobilization. The aim of this study was to evaluate safety and effectiveness of posterior percutaneous spinal instrumentation for single level lower thoracic (T9-T12) or lumbar pyogenic spondylodiscitis. Materials and Methods. Retrospective cohort analysis on 27 patients diagnosed with PS who were offered to choose between 24/7 TLSO rigid bracing for 3 to 4 months and posterior percutaneous screw-rod instrumentation bridging the infection level followed by soft bracing for 4 weeks after surgery. All patients underwent antibiotic therapy. Fifteen patients chose conservative treatment, 12 patients chose surgical treatment. Patients were seen at 1, 3, 6, 9 months after diagnosis. Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and complete blood count were measured at each follow-up visit.
This review is aimed at clinicians appraising
preclinical trauma studies and researchers investigating compromised bone
healing or novel treatments for fractures. It categorises the clinical
scenarios of poor healing of fractures and attempts to match them
with the appropriate animal models in the literature. We performed an extensive literature search of animal models
of long bone fracture repair/nonunion and grouped the resulting
studies according to the clinical scenario they were attempting
to reflect; we then scrutinised them for their reliability and accuracy
in reproducing that clinical scenario. Models for normal fracture repair (primary and secondary), delayed
union, nonunion (atrophic and hypertrophic), segmental defects and
fractures at risk of impaired healing were identified. Their accuracy
in reflecting the clinical scenario ranged greatly and the reliability
of reproducing the scenario ranged from 100% to 40%. It is vital to know the limitations and success of each model
when considering its application.