Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 67 - 67
1 Mar 2021
Perera J Atinga A Ibe I Aoude A White L Howarth D Griffin A Tsoi K Ferguson P Wunder J
Full Access

Myxofibrosarcoma (MFS) is the second most common subtype of soft tissue sarcoma (STS) and is associated with a high rate of local recurrence after resection. These tumours frequently present with peri-lesional edema, termed “tumour tails” on staging MRI scans [1]. Tumour tails(TT) may contain satellite neoplastic cells or can represent benign reactive edema. There are no clear radiological features to distinguish malignant from reactive peri-lesional edema which limits accurate surgical planning, resulting in either high rates of inadvertently positive resection margins and local recurrences or overly-aggressive resections which negatively impact function and increase morbidity [2]. The objective of this pilot study was to prospectively study a cohort of MFS patients with TTs in an attempt to identify radiological features that predict which type of edema is malignant and requires resection together with the main tumour mass. Patients diagnosed with MFS on biopsy at an orthopaedic oncology referral centre between January 1-December 31 2018 who also had TTs on staging MRI scans were prospectively recruited for the study. Tumours were treated with wide surgical excision, including the TTs, and (neo)adjuvant radiotherapy as per institutional protocol. Staging MRI scans were reviewed in a blinded fashion by two musculoskeletal radiologists to distinguish malignant from reactive TTs. The main tumour mass underwent standard histological evaluation while the regions encompassing the TTs were photographed and sectioned into grids. Each tissue section was examined histologically for the presence of satellite neoplastic cells based on morphological criteria. Radiological and histological findings were compared. Six patients met the inclusion criteria and underwent analysis. All tumours were located in the extremities and were deep to fascia. Mean age at presentation was 67 years (range 51 – 85), with a male:female ratio of 4:2. All patients received radiotherapy (50 Gy), either pre- (n=4) or post-operatively (n=2) based on multidisciplinary tumor board discussion or enrolment in a prospective clinical trial. Radiologically, TTs were labelled as malignant in four patients (66.7%) and as benign TTs in two others. The tails were recognised to be malignant due to the differing signal characteristics to reactive edema on mixed MRI sequences. The radiological evaluation correlated exactly with histological analysis, as satellite neoplastic cells were identified microscopically in the same four cases in which the TTs were designated to be malignant by MRI (specificity&sensitivity=100%). Surgical resection margins were microscopically positive in 50% of cases in the TTs themselves, and 75% of cases in which TTs were designated as malignant on staging MRI. “The malignant nature of peri-lesional edema in MFS, also known as the TT, was accurately predicted in this small pilot study based on specific radiological features which correlated exactly with histologic identification of isolated tumor cells. These findings validate development of a larger prospective study to recruit additional patients with tumor tails beyond just MFS, in order to more robustly study the correlation between the MRI appearance and histological distribution of satellite sarcoma cells in peri-lesional edema in STS. We are already recruiting to this expanded radiological-histological investigation including evaluation of additional novel MRI sequences


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 131 - 131
1 May 2012
Liu R Peacock L Mikulec K Morse A Schindeler A Little D
Full Access

Bone morphogenetic proteins (BMPs) are able to induce osteogenic differentiation in many cells, including muscle cells. However, the actual contribution of muscle cells to bone formation and repair is unclear. Our objective was to examine the capacity of myogenic cells to contribute to BMP-induced ectopic bone formation and fracture repair. Osteogenic gene expression was measured by quantitative PCR in osteoprogenitors, myoblasts, and fibroblasts following BMP-2 treatment. The MyoD-Cre x ROSA26R and MyoD-Cre x Z/AP mouse strains were used to track the fate of MyoD+ cells in vivo. In these double-transgenic mice, MyoD+ progenitors undergo a permanent recombination event to induce reporter gene expression. Ectopic bone was produced by the intramuscular implantation of BMP-7. Closed tibial fractures and open tibial fractures with periosteal stripping were also performed. Cellular contribution was tracked at one, two and three week time points by histological staining. Osteoprogenitors and myoblasts exhibited comparable expression of early and late bone markers; in contrast bone marker expression was considerably less in fibroblasts. The sensitivity of cells to BMP-2 correlated with the expression of BMP receptor-1a (Bmpr1a). Pilot experiments using the MyoD-Cre x Rosa26R mice identified a contribution by MyoD expressing cells in BMP-induced ectopic bone formation. However, false positive LacZ staining in osteoclasts led us to seek alternative systems such as the MyoD-cre x Z/AP mice that have negligible background staining. Initially, a minor contribution from MyoD expressing cells was noted in the ectopic bones in the MyoD-cre x Z/AP mice, but without false positive osteoclast staining. Soft tissue trauma usually precedes the formation of ectopic bone. Hence, to mimic the clinical condition more precisely, physical injury to the muscle was performed. Traumatising the muscle two days prior to BMP-7 implantation: (1) induced MyoD expression in quiescent satellite cells; (2) increased ectopic bone formation; and (3) greatly enhanced the number of MyoD positive cells in the ectopic bone. In open tibial fractures the majority of the initial callus was MyoD+ indicating a significant contribution by myogenic cells. In contrast, closed fractures with the periosteum intact had a negligible myogenic contribution. Myoblasts but not fibroblasts were highly responsive to BMP stimulation and this was associated with BMP receptor expression. Our transgenic mouse models demonstrate for the first time that muscle progenitors can significantly contribute to ectopic bone formation and fracture repair. This may have translational applications for clinical orthopaedic therapies


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims

This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms.

Methods

We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.


Bone & Joint 360
Vol. 5, Issue 1 | Pages 12 - 14
1 Feb 2016