Introduction. Somatosensory evoked potential (SSEP) monitoring allows for assessment of the spinal cord and susceptible structures during complex spinal surgery. It is well validated for the detection of potential neurological injury but little is known of surgeon's responses to an abnormal trace and its effect on neurological outcome. We aimed to investigate this in spinal deformity patients who are particularly vulnerable during their corrective surgery. Methods. Our institutional neurophysiology database was analysed between 1. st. October 2005 and 31. st. March 2010. Monitoring was performed by a team of trained neurophysiology technicians who were separate from the surgical team. A significant trace was defined as a 50% reduction in trace amplitude or a 10% increase in signal latency. Patients suffering a significant trace event were examined post-operatively by a Consultant Neurologist who was separate from the surgical team. Results. 2386 consecutive operations (F:1719, M:667 median age 16 yrs) were performed in the time period and 72 operations reported a significant trace event (‘red alert’). From these cases 47 (65%) had a clearly documented intervention by the surgeon and 7 patients overall suffered a lasting neurological deficit (0.3%). The most common timing events were during instrumentation (50%) and during correction/distraction (16%). Most common responses were optimisation of patient/monitoring set-up (23%) and adjustment of metalwork (22%). There were 18 wake-up tests performed. We found
Introduction. Evidence suggests that intra-operative spinal cord monitoring is sensitive and specific for detecting potential neurological injury. However, little is known about surgeons' responses to trace changes and the resultant neurological outcome. Objective. To examine the role of intra-operative somatosensory evoked potential (SSEP) monitoring in the prevention of neurological injury, specifically sensitivity and specificity, and whether the abnormalities were reversible. Methods. 2953 consecutive complex spine operations (male 36% female 64%, median age 25yrs) prospectively performed using spinal cord monitoring at a single institution (2005–2009). All traces and neurophysiological events were prospectively recorded by the neurophysiology technician. All patients with a significant neurophysiology event were examined clinically by a neurologist, separate from the spinal surgery team. Significant trace abnormality was defined as a decrease in signal amplitude of 50% or a 10% increase in latency. Timing of trace abnormality, surgeon's response and prospective neurological outcome were recorded. Sensitivity, specificity, positive/negative predictive value were calculated. A Chi-squared test was performed to assess the impact of intervention on neurological outcome (p < 0.05). Results. 2953 operations involving